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https://web.stanford.edu/~hastie/ElemStatLearn/
http://www-bcf.usc.edu/~gareth/ISL/

Clustering — an unsupervised learning method
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Clustering — an unsupervised learning method

m Goal: find subgroups of a sample observations
- Not based on any single variable (e.g. gender, race)
- Based on all given variables

m The number of subgroup is subjective

m Approaches:
- K-means clustering
- Hierarchical clustering
- Model-based clustering

MS in Business Analytics

2/29



An example — Iris data
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K-means clustering — step-by-step

Run the following R code, and see what it does.

irisl <- scale(iris[,-c(2,4,5)])

n <- nrow(iris1)

index <- sample(2, n, replace = T)
iris.subl <- irisil[index==1,]
iris.sub2 <- irisil[index==2,]
mean.subl <- apply(iris.subl, 2, mean)
mean.sub2 <- apply(iris.sub2, 2, mean)

plot (irisl, col=index+1, pch=16)
points (x=mean.subl[1], y=mean.subl[2], col=2, pch=8)
points (x=mean.sub2[1], y=mean.sub2[2], col=3, pch=8)
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This is a random grouping (first step)
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Run the following R code, and see what it does.

Eudist <- function(x, y) sqrt(sum((x-y)“~2))

di<-sapply(1:n,function(i) Eudist (mean.subl,irisi[i,]))
d2<-sapply(l:n,function(i) Eudist (mean.sub2,iris1[i,]))
index.new <- apply(cbind(dl, d2), 1, which.min)
iris.subl <- irisil[index.new==1,]

iris.sub2 <- irisl[index.new==2,]

mean.subl <- apply(iris.subl, 2, mean)

mean.sub2 <- apply(iris.sub2, 2, mean)

plot (irisl, col=index.new+1l, pch=16)
points (x=mean.subl[1], y=mean.subl[2], col=2, pch=8)
points (x=mean.sub2[1], y=mean.sub2[2], col=3, pch=8)
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Data points are regrouped (second step)
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How does this happen?
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di<-sapply(1:n,function(i) Eudist (mean.subl,irisi[i,]))
d2<-sapply(l:n,function(i) Eudist(mean.sub2,iris1[i,]))
index.new <- apply(cbind(dl, d2), 1, which.min)
iris.subl <- irisl[index.new==1,]

iris.sub2 <- irisl[index.new==2,]

mean.subl <- apply(iris.subl, 2, mean)

mean.sub2 <- apply(iris.sub2, 2, mean)

plot(irisl, col=index.new+1, pch=16)
points (x=mean.subl[1], y=mean.subl[2], col=2, pch=8)
points (x=mean.sub2[1], y=mean.sub2[2], col=3, pch=8)

Note that the code does not change at all. Why?
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Data points are regrouped again
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We can keep repeating this step, until...
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We can keep repeating this step, until...
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Members in each cluster do not change, which means the algorithm
converges. How can we translate it into some numeric scores?
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Statistics behind k-means clustering

The algorithm attempts to
m Minimize variance within clusters
m Maximize variance between clusters

m How about total variance?
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Statistics behind k-means clustering

m Computing SSE(X) for entire sample (all observations) gives
total sum squared error (SST).
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Statistics behind k-means clustering

m Computing SSE(X) for entire sample (all observations) gives
total sum squared error (SST).

m Computing SSE(X) for each cluster gives within-group sum
squared error.

m Between-group sum square:
the difference between total SS and sum of within SS.

m Exercise:
Revisit the algorithm we just performed. Compute the above
three measures at the end of each step. How are they changing
over iterations?
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Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

m Here is a very good animation to illustrate k-means clustering
algorithm. [link]
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http://shabal.in/visuals/kmeans/6.html

K-means algorithm

Randomly find k data points (observations) as the initial centers

For each data point, find the closest center and label it (e.g.,
using different colors). Now you have k clusters

Re-calculate the centers of current clusters
Repeat step 2 and 3 until the centers do not change
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Supervised Learning

m Labeled data
m The goal is to predict or explain certain outcome

m Type of problem:
- Regression: outcome is continuous
- Classification: outcome is categorical
m Popular ML algorithms:
- Least square, nearest neighbor, CART, gradient boosting,
neural network, deep learning
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Supervised Learning — Least Squares

m Linear regression model
Y:BO+61X1—|—...+BPXP~|—5

m The estimated model is

Y =f(x)= ﬁTx
m Solve B using least square
= arg m|n Z ,BTx,
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Supervised Learning — Nearest Neighbor

m Model:

x; € Nk (x)
where Ni(x) is the neighborhood of x defined by the k closest
points X;.

m k determines the flexibility of the model (should larger k or
smaller k results in more flexible model?)

m How to define the neighbor? (How to find closest points to x;?)
- Similarity measures
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Distance-based Similarity Measures

Similarity Distance Measure

= Euclidean
Distance

=Cosine Similarity

= Manhattan distance

@dataaspirant.com
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An example?

15-Nearest Neighbor Classifier 1-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as in Fig-

ure 2.1. The classes are coded as a binary variable (BLUE = 0, —1) and FIGURE 2.3. The same classification ezample in two dimensions as in Fig-
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence ure 2.1. The classes are coded as a binary variable ( =0, =1), and
chosen by majority vote amongst the 15-nearest neighbors. then predicted by 1-nearest-neighbor classification.

2ESL pg.15-16
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Model Assessment (for supervised learning)

How do we know if the estimated model f(x) is useful?
m We never know the true f(x)
m Split sample to training and testing sets
m Train the model (learning algorithm) based on training sample
by minimizing training error
m Apply the estimated model on the testing sample to calculate
the prediction (testing) error

m We care more about testing error rather than training error
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Prediction Error

One of the most common metrics is the mean squared error

m Denote training set Tr = {x;, y;}\V, and testing set
Te= {X,',_)/,'}]_M

1 -
MSEr =+ > (vi = F(x))?
ieTr

1 n
MSE . = W S yi— f(xi))?
i€Te

m Training error, MSE 7, may be biased due to overfitting

m In this course, we denote MSE as training error, and MSPE as
testing error
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Classification Problems

Response variable is qualitative
Train a classifier 6(X) that can label any new input data x
It usually involves certain decision rule

Prediction (testing) error: Misclassification rate (MR)

MRre = 3 3 i # E)
icle
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K-Fold Cross-validation

m Instead of doing training vs. testing once, we do it K times

Folder 1 |Folder2 |Folder3 |Folder4 |Folder5

Use 2,3,4,5 as training and 1 as testing
Use 1,3,4,5 as training and 2 as testing
Keep doing this loop...

Average 5 testing errors, that is CV score

MS in Business Analytics 25/29



Leave-one-out Cross-validation

m By the name, it requires to repeat training-testing procedure n
times

m However, for least square linear model, there is a short cut that
makes LOOCV the same that of a single model fit

1 Yi—Yi)2
V, = -
¢ n;(l—h;

where h; is the diagonal element of “hat" matrix.

m In general, the estimates from LOOCV are highly correlated
hence their average can have high variance

m In practice, K =5 or 10 is recommended

m Exercise: write your own code to perform 10-fold CV for knn
(try different k) model on the "iris” dataset.
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Bias-Variance Tradeoff

m This is a very important tradeoff that governs the choice of
statistical learning methods.

= Bias: how far the estimated model f(x) is to the true model
f(x).
- Unbiased estimate is defined as: Ef(x) = f(x)
- Usually, we calculate the squared bias: (Ef(x) — f(x))?

m Variance: the variation of estimated model f(x) based on
different training set.
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Bias-Variance Tradeoff

High Bias High Variance
Low Variance Low Bias

Source: link
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https://elitedatascience.com/bias-variance-tradeoff

Bias-Variance Tradeoff

m Suppose the data arise from a model Y = f(x) + ¢, with
E(e) = 0 and Var(e) = o2.

m Suppose ?(x) is trained based on some training data, and let
(x0, o) be a test observation from the same population.

m The expected prediction error can be decomposed to:

Elyo — f(x0)]> = 02 + Bias?(f(x0)) + Var(f(x0))
(Challenge yourself: Show it.)

m Typically as the flexibility of f increases, its variance increases,
and its bias decreases.
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