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Clustering – an unsupervised learning method

Goal: find subgroups of a sample observations
- Not based on any single variable (e.g. gender, race)
- Based on all given variables

The number of subgroup is subjective
Approaches:
- K-means clustering
- Hierarchical clustering
- Model-based clustering
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An example – Iris data
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K-means clustering – step-by-step

Run the following R code, and see what it does.

iris1 <- scale (iris[,-c(2 ,4 ,5) ])
n <- nrow(iris1)
index <- sample (2, n, replace = T)
iris.sub1 <- iris1[ index ==1 ,]
iris.sub2 <- iris1[ index ==2 ,]
mean.sub1 <- apply(iris.sub1 , 2, mean)
mean.sub2 <- apply(iris.sub2 , 2, mean)

plot(iris1 , col= index +1, pch =16)
points (x=mean.sub1 [1], y=mean.sub1 [2], col =2, pch =8)
points (x=mean.sub2 [1], y=mean.sub2 [2], col =3, pch =8)
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This is a random grouping (first step)
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The next step

Run the following R code, and see what it does.

Eudist <- function (x, y) sqrt(sum ((x-y)^2))

d1 <-sapply (1:n, function (i) Eudist (mean.sub1 ,iris1[i ,]))
d2 <-sapply (1:n, function (i) Eudist (mean.sub2 ,iris1[i ,]))
index.new <- apply( cbind (d1 , d2), 1, which.min)
iris.sub1 <- iris1[ index .new ==1 ,]
iris.sub2 <- iris1[ index .new ==2 ,]
mean.sub1 <- apply(iris.sub1 , 2, mean)
mean.sub2 <- apply(iris.sub2 , 2, mean)

plot(iris1 , col= index.new +1, pch =16)
points (x=mean.sub1 [1], y=mean.sub1 [2], col =2, pch =8)
points (x=mean.sub2 [1], y=mean.sub2 [2], col =3, pch =8)
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Data points are regrouped (second step)

How does this happen?
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Let’s repeat the second step

d1 <-sapply (1:n, function (i) Eudist (mean.sub1 ,iris1[i ,]))
d2 <-sapply (1:n, function (i) Eudist (mean.sub2 ,iris1[i ,]))
index.new <- apply( cbind (d1 , d2), 1, which.min)
iris.sub1 <- iris1[ index .new ==1 ,]
iris.sub2 <- iris1[ index .new ==2 ,]
mean.sub1 <- apply(iris.sub1 , 2, mean)
mean.sub2 <- apply(iris.sub2 , 2, mean)

plot(iris1 , col= index.new +1, pch =16)
points (x=mean.sub1 [1], y=mean.sub1 [2], col =2, pch =8)
points (x=mean.sub2 [1], y=mean.sub2 [2], col =3, pch =8)

Note that the code does not change at all. Why?
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Data points are regrouped again
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We can keep repeating this step, until...

Members in each cluster do not change, which means the algorithm
converges. How can we translate it into some numeric scores?
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Statistics behind k-means clustering
The algorithm attempts to

Minimize variance within clusters
Maximize variance between clusters
How about total variance?

Instead of computing variance, we compute sum squared error (SSE).
For a single variable X , SSE is defined as

SSE (X ) =
n∑

i=1
(Xi − X̄ )2

For multiple variables X = (X1, ..., Xp), SSE is defined as

SSE (X) =
n∑

i=1

p∑
j=1

(Xij − X̄j)2
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Statistics behind k-means clustering

Computing SSE (X) for entire sample (all observations) gives
total sum squared error (SST).

Computing SSE (X) for each cluster gives within-group sum
squared error.
Between-group sum square:
the difference between total SS and sum of within SS.

Exercise:
Revisit the algorithm we just performed. Compute the above
three measures at the end of each step. How are they changing
over iterations?
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Recap

Here is a very good animation to illustrate k-means clustering
algorithm. [link]
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http://shabal.in/visuals/kmeans/6.html


K-means algorithm

1 Randomly find k data points (observations) as the initial centers
2 For each data point, find the closest center and label it (e.g.,

using different colors). Now you have k clusters
3 Re-calculate the centers of current clusters
4 Repeat step 2 and 3 until the centers do not change
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Supervised Learning

Labeled data
The goal is to predict or explain certain outcome
Type of problem:
- Regression: outcome is continuous
- Classification: outcome is categorical
Popular ML algorithms:
- Least square, nearest neighbor, CART, gradient boosting,
neural network, deep learning
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Supervised Learning – Least Squares

Linear regression model

Y = β0 + β1X1 + . . . + βpXp + ϵ

The estimated model is

Ŷ = f̂ (x) = β̂
T x

Solve β̂ using least square

β̂ = arg min
β

n∑
i=1

(yi − βT xi)2
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Supervised Learning – Nearest Neighbor

Model:

Ŷ = f̂ (x) = 1
k

∑
xi ∈Nk(x)

yi

where Nk(x) is the neighborhood of x defined by the k closest
points xi .
k determines the flexibility of the model (should larger k or
smaller k results in more flexible model?)
How to define the neighbor? (How to find closest points to xi?)
- Similarity measures
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Distance-based Similarity Measures
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An example2

2ESL pg.15-16
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Model Assessment (for supervised learning)

How do we know if the estimated model f̂ (x) is useful?
We never know the true f (x)
Split sample to training and testing sets
Train the model (learning algorithm) based on training sample
by minimizing training error
Apply the estimated model on the testing sample to calculate
the prediction (testing) error
We care more about testing error rather than training error
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Prediction Error
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Prediction Error

One of the most common metrics is the mean squared error
Denote training set Tr = {xi , yi}N

1 , and testing set
Te = {xi , yi}M

1

MSETr = 1
N

∑
i∈Tr

(yi − f̂ (xi))2

MSETe = 1
M

∑
i∈Te

(yi − f̂ (xi))2

Training error, MSETr , may be biased due to overfitting
In this course, we denote MSE as training error, and MSPE as
testing error
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Classification Problems

Response variable is qualitative
Train a classifier Ĉ(x) that can label any new input data x
It usually involves certain decision rule
Prediction (testing) error: Misclassification rate (MR)

MRTe = 1
M

∑
i∈Te

I[yi ̸= Ĉ(xi)]
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K-Fold Cross-validation

Instead of doing training vs. testing once, we do it K times

Use 2,3,4,5 as training and 1 as testing
Use 1,3,4,5 as training and 2 as testing
Keep doing this loop...
Average 5 testing errors, that is CV score
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Leave-one-out Cross-validation

By the name, it requires to repeat training-testing procedure n
times
However, for least square linear model, there is a short cut that
makes LOOCV the same that of a single model fit

CVn = 1
n

n∑
i=1

(yi − ŷi
1 − hi

)2

where hi is the diagonal element of “hat" matrix.
In general, the estimates from LOOCV are highly correlated
hence their average can have high variance
In practice, K = 5 or 10 is recommended

Exercise: write your own code to perform 10-fold CV for knn
(try different k) model on the “iris” dataset.
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Bias-Variance Tradeoff

This is a very important tradeoff that governs the choice of
statistical learning methods.
Bias: how far the estimated model f̂ (x) is to the true model
f (x).
- Unbiased estimate is defined as: Ef̂ (x) = f (x)
- Usually, we calculate the squared bias: (Ef̂ (x) − f (x))2

Variance: the variation of estimated model f̂ (x) based on
different training set.
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Bias-Variance Tradeoff

Source: link
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https://elitedatascience.com/bias-variance-tradeoff


Bias-Variance Tradeoff

Suppose the data arise from a model Y = f (x) + ϵ, with
E(ϵ) = 0 and Var(ϵ) = σ2.
Suppose f̂ (x) is trained based on some training data, and let
(x0, y0) be a test observation from the same population.
The expected prediction error can be decomposed to:

E[y0 − f̂ (x0)]2 = σ2 + Bias2(f̂ (x0)) + Var(f̂ (x0))
(Challenge yourself: Show it.)

Typically as the flexibility of f̂ increases, its variance increases,
and its bias decreases.
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