Logistic Regression and Classifications

Shaobo Li

University of Kansas

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

From Continuous to Categorical Outcome

 \bigcirc) \rightarrow dog *†*(S) → cat

Response Y: discrete value

- e.g.,
$$Y = \{ \mathsf{dog}, \mathsf{cat} \}$$

- or
$$Y = \{0, 1\}$$
, 1 - dog; 0 - not dog

< □ > < □ > < □ > < □ > < □ > < □ >

Classification Methods

- K-Nearest Neighbor
- Logistic regression
- Classification tree
- Random forest
- Boosted tree
- Support vector machine
- Neural networks
- Deep learning
- ...
- Is clustering a classification model?

A B A A B A

Example: default prediction

- Default (Y = 1) vs. Nondefault (Y = 0)
- X_1 : credit card balance level, X_2 : income level
- Suppose the estimated linear regression is

$$\hat{Y} = -1.5 + 2X_1 - X_2$$

- What is the predicted value if a person's balance level is 1 and income level is 3?
- How to interpret this value?

A (1) < A (1) < A (1) </p>

æ

æ

イロン イ理 とく ヨン イヨン

- Denote C(X) as a classifier
- Most DM algorithms produce probabilistic outcome
 - e.g. probability that X belongs to each class
- Classification is based on certain decision rules
- Example: The model prediction tells that the probability of default is 0.2, then

Threshold	<0.1	>0.1
Class	Nondefault	Default

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

For binary response:

$$\mathbb{P}(y_i = 1 | \mathbf{x}_i) = \frac{1}{1 + \exp(-\beta^T \mathbf{x}_i)}$$

- Sigmoid function:
$$s(u)=rac{1}{1+e^{-u}}$$

- Interpretation: **probability** of event conditional on X

- More than two classes: *multinomial logistic model*
- Can you re-write the model such that the right-hand side is the linear predictor?

<日

<</p>

• Let $P = \mathbb{P}(Y = 1 | \mathbf{X})$, then

$$logit(P) = log\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$$

- The probability ratio $\frac{P}{1-P}$ is called odds, a function of X - Logistic model is also called log-odds model
- By simple algebra, given all X's are fixed except for X_j

$$eta_j = \log\left(rac{\operatorname{Odds}(X_j+1)}{\operatorname{Odds}(X_j)}
ight)$$

this is log of odds ratio.

く 何 ト く ヨ ト く ヨ ト

Multinomial Logit Model

• Response
$$Y = 1, 2, ..., K$$
, K classes

Given predictors **x**_i

$$\log \left(\frac{\mathbb{P}(y_i = 2)}{\mathbb{P}(Y_i = 1)} \right) = \beta_2^T \mathbf{x}_i$$
$$\log \left(\frac{\mathbb{P}(y_i = 3)}{\mathbb{P}(Y_i = 1)} \right) = \beta_3^T \mathbf{x}_i$$
$$\vdots$$
$$\log \left(\frac{\mathbb{P}(y_i = K)}{\mathbb{P}(Y_i = 1)} \right) = \beta_K^T \mathbf{x}_i$$

- The first class "1" is the reference
- There are $(K 1) \times (p + 1)$ coefficients need to be estimated.

3

イロン イヨン イヨン

Recall OLS

$$L_{OLS}(\beta) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

For logistic regression, we have a different loss

$$L_{logit}(\beta) = \sum_{i=1}^{n} -2 \left[y_i \log p_i + (1 - y_i) \log(1 - p_i) \right]$$

where $p_i = \frac{1}{1 + \exp(-\beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})}$

MS in Business Analytics

э

<日

<</p>

Maximum Likelihood Estimation (in statistics)

•
$$y_i = \begin{cases} 1 & \text{with Prob. } p_i \\ 0 & \text{with Prob. } 1 - p_i \end{cases}$$
, $p_i = \frac{1}{1 + \exp(-\beta_0 - \sum_{j=1}^p \beta_j x_{ij})}$

• Likelihood function of *i*th observation $y_i | \mathbf{x}_i$:

$$Likelihood_i = p_i^{y_i} \times (1 - p_i)^{1 - y_i}$$

• Likelihood function of all observations, i = 1, ..., n:

$$Likelihood = \prod_{i=1}^{n} p_i^{y_i} \times (1 - p_i)^{1 - y_i}$$

Iog-likelihood for all observations:

$$logLik(\beta) = \sum_{i=1}^{n} [y_i \log p_i + (1 - y_i) \log(1 - p_i)]$$

(日)

- Unlike OLS, there is no analytical solution for logit model
- Numeric solution (below is a univariate example)
 - Gradient descent

$$\hat{\beta}^{(n+1)} = \hat{\beta}^{(n)} - \alpha * L'(\hat{\beta}^{(n)})$$

where α is called learning rate.

Newton's method (a very good <u>tutorial</u>)

$$\hat{\beta}^{(n+1)} = \hat{\beta}^{(n)} - \frac{L'(\hat{\beta}^{(n)})}{L''(\hat{\beta}^{(n)})}$$

- We call derivative for univariate: f'(x), f''(x)
- We call gradient for multivariate: $\nabla f(x)$, $\nabla^2 f(x)$

- Direct outcome of model: probability
- Next step: classification
- Need decision rule (cut-off probability p-cut)
- Not unique

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Classification table based on a specific cut-off probability
- Used for model assessment

	Pred=1	Pred=0
True=1	True Positive (TP)	False Negative (FN)
True=0	False Positive (FP)	True Negative (TN)

- FP: type I error; FN: type II error
- Different p-cut results in different confusion matrix
- Try to understand this table instead of memorizing!

.

- Misclassification rate (MR) = $\frac{\text{FP}+\text{FN}}{\text{Total}}$
- True positive rate $(TPR) = \frac{TP}{TP+FN}$: Sensitivity or Recall
- True negative rate $(TNR) = \frac{TN}{FP+TN}$: Specificity
- False positive rate (FPR) = $\frac{FP}{FP+TN}$: 1 Specificity
- True negative rate (FNR) = $\frac{FN}{TP+FN}$: 1 Sensitivity

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Receiver Operating Characteristic
- Plot of FPR (X) against TPR (Y) at various p-cut values
- Overall model assessment (not for a particular decision rule)
- Unique for a given model
- Area under the curve (AUC): a measure of goodness-of-fit

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ →

ROC Curve

False positive rate (FPR)

æ

<ロト < 四ト < 三ト < 三ト

 Example: compare following two confusion matrices based on two p-cut values

	Pred=1	Pred=0
True=1	10	40
True=0	10	440

	Pred=1	Pred=0
True=1	40	10
True=0	130	320

- Which one is better? In terms of what?
- What if this is about loan application
 - Y = 1: default customer
 - Default will cost much more than reject a loan application

- 4 目 ト 4 日 ト

- Do NOT simply use 0.5!
- In general, we use grid search method to optimize a measure of classification accuracy/loss
 - Cost function (symmetric or asymmetric)
- Grid search with cross-validation