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Reidentification Risk in Panel Data: 

Protecting for k-Anonymity 

 

Abstract 

We consider the risk of re-identification of panelists in marketing research data that are widely used 

to obtain insights into buyer behavior and to develop marketing strategy. We find that 17% to 94% of the 

panelists in 15 frequently bought consumer goods categories are subject to high risk of reidentification 

through a potential record linkage attack based on their unique purchasing histories, even when their 

identities have been anonymized. We first demonstrate that the risk of reidentification is vastly understated by 

unicity, the conventional measure. Instead, we propose a new measure of reidentification risk, termed sno-

unicity, that accounts for the longitudinal nature of panel data and show that it is much larger than unicity. To 

protect the privacy of panelists we consider the well-known privacy notion of k-anonymity, and develop a 

new approach called graph-based minimum movement k-anonymization (k-MM) that is designed especially for panel 

data. The proposed k-MM approach can be formulated as an optimization problem where the objective is to 

minimally distort variables in the original data based on weights which users pre-specify corresponding to 

their use case. We further show how our approach can be extended to achieve l-diversity. We apply the k-

MM approach to two different panel datasets that are widely used in marketing research. To achieve a given 

privacy level, compared to several benchmark protection methods, the protected data from our method result 

in the least distortion in inferences about key marketing metrics such as brand market shares, share of 

category requirements, brand switching rates, and marketing-mix parameters estimated from a hierarchical 

Bayesian brand choice model. 

Keywords: brand choice, data privacy, data sharing, hierarchical Bayesian model, optimization, unicity 
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1 Introduction 
Individual-level panel data are commonly used in many areas of marketing research. For instance, 

web browsing data from Comscore’s panel of over 2 million work and home panelists are widely used for 

measuring digital audiences (Lipsman et al., 2012). Similarly, Nielsen’s TV and Radio panels are used for 

measuring viewership and listenership, respectively. In the consumer-packaged goods (CPG) industry, IRI 

and Nielsen’s household panels provide purchasing data that are analyzed by retailers and manufacturers to 

develop marketing programs that drive brand and category performance. These companies are required to 

provide panelists with privacy agreements that explain how the data will be used and how the company 

complies with data privacy laws and regulations such as the General Data Protection Regulation (GDPR) and 

the California Consumer Privacy Act (CCPA). Under these regulations, companies are required to anonymize 

personal identifying information (PII) such as first and last name, home postal address, or email address 

before any type of data analysis.  

Although privacy laws are intended to reduce the leakage of personal data, individuals may still be 

subject to reidentification through data linkage, which is also known as a background attack. One reason is 

that the availability and type of external information used in such an attack can never be assessed with 

certainty (Finck and Pallas 2020), and non-PII attributes can be used for linking and reidentification. Sweeney 

(2000) showed that 87% of individuals in the United States have a unique combination of three attributes: 

gender, date of birth and 5-digit zip code, hence they can be re-identified. Other examples show that 

demographic information is not even necessary to destroy the anonymity of a data set. The New York State 

Taxi and Limousine Commission released the “anonymous” details of 173 million driving routes without PII 

or demographic information, but it was discovered that the driving patterns revealed the drivers’ home 

addresses (Hern 2014). Narayanan and Shmatikov (2008) successfully de-anonymized users in an anonymized 

dataset of movie ratings of 0.5M subscribers of Netflix, released publicly by Netflix as part of a competition. 

In this case the background or external information of individuals was obtained from an IMDb dataset 

(www.imdb.com), which was also public. De Montjoye et al. (2015) illustrated that only four spatiotemporal 

points are sufficient to uniquely re-identify 90% of anonymized individuals in a credit card dataset.  

http://www.imdb.com/
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Quasi-identifiers (QIDs, Sweeney 2000, 2002a) are attributes that are common between the dataset 

that is subject to privacy risk (the target dataset) and the external data and can be used to link them. QIDs do 

not directly identify individuals but may do so indirectly. In this paper, we follow this convention and assume 

that an intruder attempts to reidentify a target through record linkage by matching QIDs (Fung et al. 2010; Li 

and Sarkar 2011). The proportion of individuals with unique QIDs in the target dataset, which following De 

Montjoye et al. (2013) we call “unicity”, is a natural and conventional measure of reidentification risk in the 

data privacy literature (Lambert 1993; Sweeney 2002; Li and Sarkar 2006; El Emam and Dankar 2008). In 

other words, an individual is said to be re-identifiable if she has a QID that is different from anyone else in 

the target dataset, regardless of whether an intruder’s external data contains this individual’s QID. As a 

measure of reidentification risk, unicity does not and should not depend on any particular intruder’s 

knowledge because such information is hard to assess and is not known by data providers a priori. Therefore, 

unicity can also be considered a property of the target dataset for given QID attributes. 

To reduce reidentification risk as measured by unicity, the seminal work of Sweeney (Sweeney 2002a) 

introduced k-anonymity, a privacy protection model which has been widely adopted in the literature and in 

practice, e.g., Google Cloud (https://cloud.google.com/dlp/docs/compute-k-anonymity). A released dataset 

is said to be k-anonymous if any individual in the dataset is indistinguishable from at least k-1 other 

individuals with respect to the QIDs. Therefore, the parameter k defines the degree of privacy and can be 

interpreted as follows: the probability of an individual being re-identified in the target data is at most 1/k.  

Most existing research on k-anonymity concerns reidentification in cross-sectional microdata, where 

each row typically consists of an individual’s demographic information, which forms the QIDs, and 

information such as disease diagnosis or prescription, which is the sensitive information to be learned upon 

reidentification. Different from this literature, we are concerned with the reidentification risk in panel data, 

where each individual has multiple records across time. To our knowledge, reidentification risk and k-

anonymization of panel data has not been well studied in the literature. We find that the reidentification risk 

in panel data is potentially much higher than indicated by conventional measures that were developed for 

https://cloud.google.com/dlp/docs/compute-k-anonymity
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cross-sectional data. Further, we propose a new method to achieve k-anonymity in panel data since existing 

approaches for cross-sectional data cannot be directly applied to panel data.  

In this paper we show two empirical applications to panel data that are widely used in marketing 

research and find that in both the risk of reidentification of panelists is extremely high. Our first application is 

to household panel data that report consumer packaged goods (CPG) purchases. In the US market the two 

leading providers of these data – IRI and Nielsen – jointly operate a National Consumer Panel 

(https://www.ncppanel.com/what-we-do/) which consists of about 120,000 households. Our second 

application is to data from a panel of physicians whose prescription-writing behaviors are tracked over time 

to evaluate the effectiveness of marketing activities such as detailing by sales representatives (for typical 

applications of such data see Manchanda et al. (2004), Liu et al. (2016), and Kappe and Stremersch (2016)). In 

this paper, we primarily focus on the household panel data and use the physician panel data to demonstrate 

the generality of our method.  

The data we use in our household panel application were provided by IRI, which is responsible for 

data protection and privacy under both GDPR and CCPA (https://www.iriworldwide.com/en-

us/company/global-privacy-statement/privacy-policy). Because of their commercial value, the anonymized 

household panel data gathered by market research companies are shared extensively with users like 

manufacturers and retailers, as well as third parties who offer data analytics and consulting services to the 

users (Bucklin and Gupta 1999). The purchasing data may also be combined with other information about 

the panelists, such as online browsing behaviors, media consumption, advertising exposures, participation in 

loyalty programs, and so forth. IRI protects the identities of participating households by exercising common 

precautions like removal of personal identifying information (PII) such as first and last name, home postal 

address, or email address. However, other personal information such as purchasing activities can be used to 

identify household members in the event of a data breach or a linkage attack. The question we address in this 

paper is the extent to which the identities of panelist households are at risk of disclosure, and how this 

reidentification risk can be reduced while minimally changing the data.  

https://www.ncppanel.com/what-we-do/
https://www.iriworldwide.com/en-us/company/global-privacy-statement/privacy-policy
https://www.iriworldwide.com/en-us/company/global-privacy-statement/privacy-policy
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1.1 A Motivating Example 
Figure 1 illustrates how individuals in the household panel data can be reidentified and the resulting 

loss of privacy. Imagine an “intruder” who has access to the household panel data and certain external data 

(labeled “Intruder’s knowledge” in Figure 1). The goal of the intruder is to reidentify one or more anonymous 

panelists from the panel data, who are also in the external data, and both data share some common attributes 

(QID). Because panel data are gathered in a panelist-centric manner, they usually contain rich information 

about panelist households such as purchases in multiple product categories and at multiple retailers, while the 

intruder’s knowledge is limited (e.g., purchases in a single category, such as salty snacks, from one retail store) 

but may contain individuals’ true identities. The purchase records of salty snacks can then serve as the QIDs 

that the intruder can match with purchases of salty snacks in the panel data. An individual in the panel data is 

re-identifiable if at least one of her purchase records of salty snacks (QID) is unique, so that the match to 

external data can lead to reidentification, i.e., the panelist ID (PANID) in the household panel data is linked 

to the true identity in the external data. This is known as identity disclosure risk (Duncan and Lambert 1989), 

which is also the focus of this paper.  

 
Figure 1. Illustration of the reidentification risk for household panel data 

The resulting privacy loss is very consequential, since for the reidentified individual the intruder 

uncovers purchases in potentially sensitive categories such as alcohol, tobacco, pregnancy tests, or over-the-

counter drugs (cross-category attack), purchases from competitor retailers (cross-retailer attack), and personal 

information such as household income, home address, zip code, and number of family members (personal 
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information attack), that is typically available in the household panel data. In fact, we found in our empirical 

analysis that among households that were re-identifiable based on their purchases of salty snacks in a given 

store, 20% bought beer and 2% bought cigarettes from a different store. These consequential privacy risks are 

known as attribute disclosure risk (Duncan and Lambert 1989). Finally, we stress that even if no sensitive 

information is revealed about the reidentified individual, the very act of reidentification is still a compromise 

of data privacy (Lambert 1993) and violates privacy laws and regulations.  

Examples of intruders can be employees of retail chains or consulting companies, or individuals who 

have access to multiple data sources that are sufficient to compile a sample of transaction data from one retail 

store (intruder’s knowledge) that contains individuals who are also present in the household panel data. For 

instance, an employee of a retail chain has access to some transactions data from the retailer’s point-of-sale 

system, which may also include buyers’ identities (e.g., credit card purchases or transactions linked to loyalty 

program databases). The “intruder” can also be a panelist’s neighbor, colleague, friend or family member who 

does not intentionally wish to reidentify this panelist but knows one or more purchases made by this panelist 

which happen to be unique in the panel data. It is important to note that the intruder’s knowledge is never 

known to the data provider a priori and is hard to estimate. A data vendor such as IRI or AC Nielsen must 

assess the reidentification risk based on the characteristics of the released data, not intruders’ knowledge.  

Table 1. Example of shopping transaction-level household panel data. 
Transaction Panelist ID WEEK Units of Lays bought Units of Ruffles bought QID 

A1 A 2 2 2 (2, 2, 2) 
A2 A 2 0 1 (2, 0, 1) 
A3 A 2 2 0 (2, 2, 0) 
B1 B 2 2 0 (2, 2, 0) 
B2 B 2 2 1 (2, 2, 1) 
B3 B 3 0 2 (3, 0, 2) 
C1 C 2 0 1 (2, 0, 1) 
C2 C 2 2 1 (2, 2, 1) 
C3 C 3 1 0 (3, 1, 0) 
D1 D 3 1 0 (3, 1, 0) 
D2 D 3 0 2 (3, 0, 2) 

We consider uniqueness-based reidentification risk or unicity, which in this case is defined as the 

proportion of buying households in the category who have at least one unique QID. However, we argue that 

unicity can underestimate the uniqueness of QIDs in panel data. To see this, consider Table 1 which shows 
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hypothetical transaction-level purchases of potato chips by four panelists identified pseudonymously (i.e., 

their names have been replaced with reversible pseudo-IDs) as A, B, C, and D. In this simplified example, we 

assume there are only four panelists and two brands (Lays and Ruffles). The column labeled “QID” is a 

quasi-identifier, a vector constructed as the combination of the week and number of units purchased of the 

two brands. To determine individual re-identifiability, the data provider first filters all households in the panel 

data that have unique QIDs. For instance, in Table 1 the QID (2, 2, 2) is unique among the 11 observations, 

which implies that household A is re-identifiable.2 Except for transaction A1, all the other transactions are 

not unique, hence the reidentification risk is computed using unicity is one out of four panelists, or 25%.  

However, this calculation disregards an important characteristic of panel data. If individual A is re-

identified, then all transactions made by A should not be considered and need to be removed. After removal 

of transactions A1, A2 and A3 we find that transaction B1 is unique, hence individual B is re-identifiable. 

Similarly, individuals C and D are both subsequently found to be re-identifiable. Therefore, the 

reidentification risk is 100% and not 25%. We emphasize that we say an individual is “re-identifiable” rather 

than “re-identified” because the intruder’s knowledge is not relevant in this computation. We call this 

measure of reidentification risk “sno-unicity” (sno for snowballing) because it is computed recursively. Sno-

unicity can be thought of as a worst-case scenario reidentification risk, which is realized when the intruder 

knows all the unique QIDs as illustrated in this example.  

It is clear that reidentification risk depends heavily on the uniqueness of the QIDs in the data. Unlike 

many existing studies where individuals’ (time-invariant) demographic characteristics are QIDs, we focus on 

the purchase data as the QIDs, because the purchase records often vary within each individual, and the goal 

of our study is to anonymize such heterogeneous records of each individual. Clearly, inclusion of both 

demographics and purchases as QIDs will increase the risk of reidentification beyond the levels we report in 

this paper, and therefore make the case for privacy protection even stronger. Further, we focus on identity 

disclosure risk and do not assume specific sensitive attributes.  

 
2 In this paper we consider a simplified scenario in which the intruder matches one QID per household at a time rather than 
multiple transactions because the number of transactions in the external data often do not match that in the panel data. 
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1.2 Summary of Contributions 
In this paper we make three main contributions. First, we demonstrate that based on unicity the 

reidentification risk in household panel data (physician panel data) is very high based on a QID that is 

composed of variables indicating time and units bought (prescriptions written) of the largest selling ten (four) 

brands.3 In Figure 2 we show the unicity of the panel data in each of 15 frequently purchased consumer 

packaged goods. We find that the unicity ranges from 14.4% for mayonnaise to as high as 64% for 

carbonated beverages, implying that 64% of panelist households are re-identifiable based only on their 

carbonated beverage transactions. In the prescription data 57% of physicians in the panel are re-identifiable 

based on unicity.  

 
Figure 2: Reidentification risk in 15 product categories in IRI data. The quasi-identifier (QID) is composed of 
transaction week and number of units purchased of largest selling ten brands in the category. 

Second, we argue that the conventional measure, unicity, understates reidentification risk because it 

does not account for the longitudinal nature of panel data, namely, that there are multiple records per 

panelist. To account for this characteristic of the data, we propose a new measure of reidentification risk 

called snowballing unicity (we abbreviate it as sno-unicity) which captures the potentially recursive nature of 

reidentification of panelists in longitudinal data. Based on sno-unicity we find that the reidentification risks in 

both household scanner panel data and the physician panel data are significantly higher than those based on 

unicity. Figure 2 shows that sno-unicity is higher than unicity in all 15 categories in the household panel data. 

 
3 Subsequently in the paper we provide more details about the household panel data and the physician panel data, and the measures. 
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Alarmingly, over 94% of carbonated beverage customers are re-identifiable. We note that if instead of a single 

category, purchases in multiple product categories are included in the QID, the reidentification risk can only 

be higher because the resulting QID is even more likely to be unique. In the physician panel data, we find that 

the sno-unicity is 100%, implying that all physicians are potentially re-identifiable.  

We further derive an individual-specific probabilistic measure of reidentification risk based on two 

byproducts from the sno-unicity computation; these byproducts are the number of unique QIDs of an 

individual, and the iteration at which an individual becomes re-identifiable. Application of this measure to the 

household panel data generates the insight that heavier category buyers and less brand loyal buyers suffer 

higher reidentification risk.  

Our third contribution is to propose a new method to reduce reidentification risk in panel data by 

guaranteeing k-anonymity while ensuring minimal distortion. As mentioned earlier, existing approaches for k-

anonymization are not readily applicable to panel data. Our proposed approach is designed for protecting 

panel data and is called graph-based minimum movement k-anonymization (we abbreviate this as k-MM). The term 

graph-based refers to the fact that the problem and its solution can be graphically represented, as we show in 

Sections 3 and 4. Our proposed approach offers the following advantages over existing approaches. 

First, our approach generates protected data that preserve the dimensionality and variable types in 

the original data. This is unlike generalization and suppression (Sweeney 2002b), which are commonly used 

jointly for k-anonymization. Generalization, also known as domain generalization hierarchy, entails replacing 

the values of the QID attributes with more general values that represent a group of individuals with respect 

to those attributes. For example, the specific age of an individual can be generalized into intervals such as < 

20, 21-30, 31-50, and > 50 years; this may result in substantial loss of utility due to the change of attribute 

type (Gelman and Park 2009). Suppression of data entails completely removing some records that do not 

satisfy k-anonymity. As a result, suppression either reduces the size of the protected data or creates missing 

values, which also affects the data utility adversely. Our approach is based on alteration, which means that we 

only alter the values in some cells of the target data if necessary. In Table 1 row 1, for example, we could 
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change the units bought of Ruffles from 2 to 1, so that 2-anonymity is achieved. As a result, the number of 

records for each individual and the type of the altered variable remain the same as in the original data.  

Second, our approach achieves minimum distortion by solving an optimization problem where the 

objective function is the cost of distortion represented by distance moved (e.g., the cost of changing 2 to 1 is 

lower than changing 2 to 0). The problem can be elegantly represented in a graph where each vertex is an 

individual and each edge is a unique QID value (e.g., “2-2-2” in Table 1 row 1). Such a graph representation 

makes our k-anonymization problem easy to understand and interpret. Our graph is different from those 

used for studying computational complexity of k-anonymity (Meyerson and Williams 2004; Aggarwal et al. 

2005), wherein one record per individual is assumed. Following our graph representation, the optimization 

problem can be formulated as an integer linear program, and we propose a heuristic based on divide-and-

conquer to solve it efficiently. Further, unlike generalization, our formulation does not require any pre-

specified domain generalization hierarchy because we alter values instead of generalizing to a higher level.  

Third, the goal of minimal distortion of the original data is to preserve the accuracy of analyses that 

are subsequently performed on the protected data, without specifying a priori what those analyses might be. 

However, if the user wishes to preserve specific kinds of information in the original data, our method also 

allows the user to specify different levels of distortion for different attributes contained in the QID by 

incorporating weights. For instance, as we elaborate in the subsequent empirical application, if the household 

panel data are used for pricing decisions, the user may wish to incur less distortion in the purchases of larger 

market share brands. In a healthcare setting where demographic characteristics of patients are QIDs, 

decisions about vaccination policy may require that distorting patient age is more costly than distorting the 

patient’s geographic location. In the empirical application we demonstrate that our protection approach can 

successfully achieve such a goal. 

In both empirical applications we find that compared with benchmark methods, our proposed 

approach preserves the utility of the unprotected data much better on key measures of interest to the 

marketing manager: market shares of brands, brand loyalty measured as share of category requirements, brand 
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switching, and parameter estimates from a hierarchical Bayesian brand choice model (e.g., Allenby and Rossi 

1998; Bruno et al. 2018).  

The rest of this paper is organized as follows: Section 2 reviews related work on privacy protection. 

Section 3 discusses in greater depth data privacy concerns in panel data and formally defines our proposed 

measure of reidentification risk. We present the proposed data protection method in Section 4 and empirical 

results in Section 5. We conclude in Section 6 and discuss limitations and future research opportunities. 

2 Related Work  
The study of data privacy originated in the statistical disclosure limitation literature (Cox 1980; 

Duncan and Lambert 1986; Rubin 1993; Reiter 2005), which examines statistical agencies’ attempts to release 

microdata for public access while controlling the risk of individual identity disclosure. Popular methods 

employed by agencies such as the U.S. Census Bureau include aggregation, suppression, top/bottom-coding, 

rounding, swapping, noise addition, and synthetic data; see, e.g., Matthews and Harel (2011) for a thorough 

review. In recent years, issues of data privacy have been actively studied in business domains including 

marketing and information systems, using consumer behavior, organizational, ethical, and economic 

perspectives (Smith et al. 1996; Malhotra et al. 2004; Goldfarb et al. 2012; Tucker 2014). Comprehensive 

reviews can be found in Smith et al. (2011), Martin and Murphy (2017) and Wieringa et al. (2021). Ferrell 

(2017) notes the gap between understanding privacy and taking actions to determine risk and protect privacy 

in marketing practice. Wedel and Kannan (2016, page 114) emphasize that research “needs to focus on how 

customers’ privacy can be protected in the use of rich marketing data while maximizing the utility that can be 

derived from it by developing models and algorithms that can preserve or ensure consumer privacy.”  

Among the early papers that develop privacy protection methods for marketing research data, 

Schneider et al. (2017) developed a Dirichlet-Multinomial model based on 𝜖𝜖-differential privacy (Dwork 2006, 

Machanavajjhala et al. 2008) for a company to protect its customer-level segment membership information 

when entering a data-sharing arrangement with another organization. Schneider et al. (2018) studied point-of-

sale data and finds that sales data are very informative for uncovering retail store identities. They proposed a 

Bayesian approach to generate synthetic sales data that significantly reduce the reidentification risk while 
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preserving useful information for estimating marketing-mix models. More recently, Anand and Lee (2022) 

utilized a deep learning method, generative adversarial networks (GANs), to generate synthetic data and 

showed improvement over Schneider et al. (2018) on the privacy-utility tradeoff. The current paper maintains 

a focus on marketing data but considers reidentification risk arising from potential data linkage. Moreover, we 

adopt a well-known privacy model, k-anonymity, to develop a new protection method for panel data.  

In the domain of computer information systems, a large body of work has developed methodologies 

to protect data privacy; these are known as privacy-preserving data publishing (PPDP), which overlaps with 

the literature on statistical disclosure limitation. In general, privacy models are classified into two categories 

that concern two different types of privacy attacks, record linkage and probabilistic attack (Fung et al. 2010). 

The former type of attack assumes that the intruder knows the QID and uses it to link records to reidentify 

individuals. Well-known data protection models include k-anonymity, l-diversity (Machanavajjhala et al. 2006) 

and t-closeness (Li et al. 2007), where the latter two have been developed to address the risk of sensitive-

attribute disclosure (Duncan and Lambert 1989; Li and Sarkar 2006), requiring that the values of sensitive 

attributes in each k-anonymized group (i.e., the group of individuals that share the same QID) to be as 

diverse as possible. The second type of privacy attack, probabilistic attack, does not assume record linkage; 

instead, it is based on the intruder’s prior and posterior probabilistic beliefs about a target after accessing the 

published data. The most well-known models to prevent probabilistic attacks are based on 𝜖𝜖-differential 

privacy (Dwork 2006), which provides a theoretical guarantee that the presence or absence of an individual’s 

record in a database will not substantially affect the outcome of any analysis. As mentioned earlier, the 

present study concerns privacy attacks through record linkage with the focus on identity disclosure risk. 

To prevent record linkage-based privacy attacks, a wide range of methods have been developed 

under the framework of k-anonymity. Common ways to achieve k-anonymity are generalization and 

suppression for which various algorithms have been proposed (Sweeney 2002b; LeFevre et al. 2005, 2006; 

Zhu et al. 2009). Because the k-anonymity problem is NP-hard (Meyerson and Williams 2004; Aggarwal et al. 

2005), a vast literature mainly focuses on improving computational efficiency and optimality (Aggarwal 2005; 

Bayardo et al. 2005; LeFevre et al. 2005, 2006; Kenig and Tassa 2012). However, the larger the number of 



13 
 

attributes that constitute a QID, the more difficult it is for generalization to accomplish k-anonymity; hence, 

more observations need to be suppressed. This often results in substantial loss of accuracy in the protected 

data relative to the original data (Samarati and Sweeney 1998; Aggarwal 2005). Several clustering-based 

approaches, also known as microaggregation, have been proposed to overcome limitations in generalization 

and suppression (Domingo-Ferrer and Torra 2005; Nergiz and Clifton 2007). The idea is to partition the data 

into small subsamples in which individuals are similar in terms of QIDs. Li and Sarkar (2011, 2013) 

developed tree-based methods to anonymize numeric attributes, for which generalization-based methods can 

cause significant information loss (Domingo-Ferrer and Torra 2005). Li and Qin (2017) studied medical data 

and anonymizes text records with a clustering-based approach.  

Our approach is different from the literature in terms of both the privacy model and the privacy-

enhancing solution. First, as noted, most existing work assumes one record per individual in the target data 

whereas in panel data each individual has multiple records over time. Any solution to achieve k-anonymity 

must ensure that all QIDs of any given individual are indistinguishable from at least k - 1 other individuals. If 

care is not taken, it is possible that in the protected data k-anonymity is satisfied across the same individual’s 

different records but is violated across different individuals. In the household panel data, for example, if 

household A has two shopping trips with different QIDs, then to achieve 2-anonymity one of the trips may 

be altered such that the two QIDs become the same in the protected data. Now, even though it appears that 

2-anonymity is satisfied in the traditional sense, this QID may still be used to identify household A if no other 

household has this QID. Kartal and Li (2020) is among the few studies that consider data with multiple 

records per person. However, they do not assume a longitudinal structure, so that all records of an individual 

belong to the same k-anonymized group. This is fundamentally different from our case, where an individual 

with multiple records should be in multiple k-anonymized groups in order to preserve the heterogeneity and 

the longitudinal structure of the panel data.  

Second, neither generalization nor suppression are suitable approaches to achieve k-anonymity for 

panel data applications. A natural way to generalize household panel data under our setting is to convert the 

number of units bought of a brand to binary values that indicate only whether the brand was chosen. Such a 
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generalization suffers from great loss of information as all purchase quantities are discarded, which poses 

significant limitations for marketing applications. Even with such a generalization, k-anonymity is not 

guaranteed, even for k=2, as a set of choices can also be unique. Another way to generalize is aggregating 

some brands. For instance, Lay’s Natural and Lay’s Wavy are two sub-brands, hence they can be generalized 

to a single brand Lay’s. However, such a transformation reduces the value of the data considerably because 

the two sub-brands are priced and positioned differently and aggregating them implies that differences as well 

as competition between them can no longer be examined. The most extreme form of generalization is to 

aggregate the panel data across households to obtain, say, weekly sales data, whereby all information at the 

individual level is erased. Although reidentification risk is likely to be fully removed, such aggregation reduces 

the utility of the protected data drastically. For instance, it is much more challenging to model brand choices 

accounting for heterogeneity between households, an essential requirement for segmentation and targeting 

strategies (Bodapati and Gupta 2004; Chen and Yang 2007). Suppression can also result in significant loss of 

information. As mentioned earlier, to achieve 2-anonymity, suppression involves deleting all records that 

appear to be unique in the dataset. For larger k, the number of removed observations can be very large. Our 

empirical study includes special cases of generalization (aggregation) and suppression (record deletion) as 

benchmarks for comparison and we find that both entail substantial loss of information. 

3 Reidentification Risks in Panel Data  

3.1 Snowballing Unicity 
To provide a visual depiction of how reidentification risk arises, we first return to the household 

panel data example discussed earlier. Figure 3(a) is a graphical representation of the data shown in Table 1, 

where the nodes A, B, C and D are the four households, and A1, A2, and A3 represent QIDs associated with 

A’s three shopping trips (see the column labeled “Transaction” in Table 1). Similarly, B1-B3, C1-C3 and D1-

D2 are QIDs associated with B, C, and D’s shopping trips. Labels on a solid line connecting two households 

indicate QIDs that are the same. A label on a dashed line indicates a QID that is unique (e.g., A1 in Table 1 

and in Figure 3(a)); accordingly, dashed lines do not connect two households. Re-identifiable households are 
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highlighted in red. To begin, it appears that only household A is re-identifiable, implying that the risk of re-

identification is one out of four households, or 25%. 

 
Figure 3: Graphical illustration of sno-unicity based on Table 1. From left (a) to right (c), we illustrate how 
the reidentification risk is higher than that based on the traditional unicity measure. 

Simulating what an intruder would do next if household A is reidentified by a successful match of the 

unique QID (2, 2, 2), we then remove all records associated with household A, resulting in graph (b) in which 

households B and C have unique QIDs corresponding to transactions B2 and C1, respectively. Therefore, B 

and C can be further uniquely reidentified if both B1 and C1 can be matched to external data. After removing 

all records of households B and C, we find that household D is also re-identifiable as shown in panel (c). As a 

result, all four households in these panel data can be uniquely re-identified, implying that the reidentification 

risk is 100% and not 25%, which is what the unicity measure incorrectly showed based on graph (a). 

By recursively deleting individuals and re-assessing unicity, we see that the privacy risk is much higher 

in panel data. Hence the notion of snowballing unicity is naturally suitable for panel data. We formally define 

snowballing unicity (sno-unicity) below, followed by a procedure that outlines how sno-unicity is computed.  

Definition 1 (Snowballing Unicity): Let 𝒬𝒬𝑗𝑗 = {𝑄𝑄𝑄𝑄𝐷𝐷𝑗𝑗,1, … ,𝑄𝑄𝑄𝑄𝐷𝐷𝑗𝑗,𝑡𝑡𝑗𝑗} be the set of all QIDs for 

panelist 𝑗𝑗 and ℚ(1) = {𝒬𝒬1, … ,𝒬𝒬𝑚𝑚} be the set of QIDs for all 𝑚𝑚 panelists. Define 𝛿𝛿𝑗𝑗
(1) = 1 if there exists a 

𝑄𝑄𝑄𝑄𝐷𝐷𝑗𝑗,𝑡𝑡 such that 𝑄𝑄𝑄𝑄𝐷𝐷𝑗𝑗,𝑡𝑡 ∉ ℚ(1)\𝒬𝒬𝑗𝑗 and 0 otherwise. Then we can recursively define ℚ(𝑙𝑙) = ℚ(𝑙𝑙−1)\ℚ∗ for 

𝑙𝑙 = 2, 3, …, where ℚ∗ = {𝒬𝒬𝑗𝑗 ∈ ℚ(𝑙𝑙−1): 𝛿𝛿𝑗𝑗
(𝑙𝑙−1) = 1}, until ℚ∗ = Ø. Then the snowballing unicity is defined as  

𝑆𝑆𝑆𝑆 = 1
𝑚𝑚
∑ ∑ 𝛿𝛿𝑗𝑗

(𝑙𝑙)
𝑗𝑗𝑙𝑙 . 

It is not hard to see from Definition 1 that the traditional measure of unicity is calculated as 

1
𝑚𝑚
∑ 𝛿𝛿𝑗𝑗

(1)
𝑗𝑗 , which is less than or equal to SU. Sno-unicity measures the largest possible proportion of re-

identifiable individuals under record linkage, while unicity only reflects that proportion in a single attempt, 
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ignoring the impact of a reidentified individual on the privacy risk of other individuals. It is worth noting that 

Definition 1 also defines who is re-identifiable and at which iteration, i.e., panelist 𝑗𝑗 is re-identifiable at 

iteration 𝑙𝑙 if 𝛿𝛿𝑗𝑗
(𝑙𝑙) = 1. This implies that under an actual privacy attack, SU is realized if an intruder has 

external data where the QID can be exactly matched to those in the target data satisfying 𝛿𝛿𝑗𝑗
(𝑙𝑙) = 1 across all 

iterations. This can be viewed as a worst-case scenario with respect to the information an intruder may have. 

In contrast, unicity only defines re-identifiable individuals if 𝛿𝛿𝑗𝑗
(1) = 1. Thus, for any given external data, the 

empirical reidentification risk computed based on SU is always greater than or equal to that based on unicity. 

As discussed earlier, given QID attributes, uniqueness-based measures, both unicity and sno-unicity, 

are a property of the dataset itself that does not depend on the intruder’s knowledge. As a result, they are 

computed purely based on the panel data. The following procedure outlines how sno-unicity is calculated.  

3.2 Individual Reidentification Risk 
The above procedure for computing sno-unicity enables us to obtain two byproducts that can be 

useful in assessing the reidentification risk at the individual level. First, we are able to determine who is re-

identifiable and at which iteration. Second, for each re-identifiable individual, we can obtain the number of 

unique QIDs. For instance, if an individual has 5 different unique QIDs, then this person is easier to re-

identify than another individual with only one unique QID. If two individuals have the same number of 

unique QIDs, but one person is found to be re-identifiable in the first iteration while the other in the second 

Procedure for Calculating snowballing unicity (sno-unicity) 
Input: Panel data at the transaction-level  
Result: Sno-unicity 
Initialization: Construct QID as a separate variable and reshape the panel data to a two-way 

contingency table with rows being all unique QIDs and columns being unique panelist IDs. 
Entries in the table are either 1 indicating that a panelist has a specific QID, or 0 if not. 

while there are rows with row sum equal to 1 do  
Decompose the table into two tables: 
Table A: first subset by rows with row sum equal to 1 (this indicates the QIDs are unique). 

Then subset by columns with column sum greater than or equal to 1 (this indicates the 
customers who have at least one unique QID). 𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙(𝐴𝐴) = ∑ 𝛿𝛿𝑗𝑗

(𝑙𝑙)
𝑗𝑗  is the number of re-

identifiable individuals in iteration 𝑙𝑙; 
Table AC: The complement of Table A is used for the next iteration if necessary (e.g., 

evaluated in the “while” condition). 
end 

Calculate the proportion of all re-identifiable individuals. 
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iteration, then the first person has higher reidentification risk than the second. Based on this intuition, we 

derive the following probabilistic measure of individual reidentification risk (IR):  

Definition 2 (Individual Risk): Let 𝑁𝑁𝑗𝑗 be the total number of distinct QIDs of panelist 𝑗𝑗, and 𝑀𝑀𝑗𝑗,𝑙𝑙𝑗𝑗 

be the number of those QIDs that are different from all other individuals’ QIDs at iteration 𝑙𝑙𝑗𝑗, the iteration at 

which panelist 𝑗𝑗 is re-identifiable according to Definition 1. Define 𝑀𝑀𝑗𝑗,𝑙𝑙𝑗𝑗 = 0 if panelist 𝑗𝑗 is not re-identifiable 

along the snowballing process. Then the reidentification risk of panelist 𝑗𝑗 is defined as 

𝑄𝑄𝑅𝑅𝑗𝑗 =
𝑀𝑀𝑗𝑗,𝑙𝑙𝑗𝑗

𝑁𝑁𝑗𝑗
× 𝑄𝑄𝑅𝑅���𝑙𝑙𝑗𝑗−1, 

where 𝑄𝑄𝑅𝑅���𝑙𝑙 = 1 for 𝑙𝑙 = 0, and 𝑄𝑄𝑅𝑅���𝑙𝑙 =
∑ 𝐼𝐼𝑅𝑅𝑗𝑗×𝛿𝛿𝑗𝑗

(𝑙𝑙)
𝑗𝑗

∑ 𝛿𝛿𝑗𝑗
(𝑙𝑙)

𝑗𝑗
 for 𝑙𝑙 ≥ 1, where 𝛿𝛿𝑗𝑗

(𝑙𝑙) follows Definition 1. 

To better understand Definition 2, we start with a re-identifiable panelist 𝑗𝑗 in the first iteration, that 

is, 𝑄𝑄𝑅𝑅𝑗𝑗 = 𝑀𝑀𝑗𝑗,1/𝑁𝑁𝑗𝑗. This is simply the proportion of QIDs of panelist 𝑗𝑗 that are different from all other 

individuals’ QIDs, which can be viewed as the likelihood of a unique match for panelist 𝑗𝑗. Moving forward, 

the re-identifiable individuals in the 𝑙𝑙𝑗𝑗th iteration are conditional on those who can be reidentified in the 

�𝑙𝑙𝑗𝑗 − 1�th iteration. Therefore, multiplying 𝑄𝑄𝑅𝑅����𝑙𝑙𝑗𝑗−1�, the average IR of those who are re-identifiable in the 

previous iteration, with 𝑀𝑀𝑗𝑗,𝑙𝑙𝑗𝑗/𝑁𝑁𝑗𝑗 results in the reidentification probability for panelist 𝑗𝑗 in the 𝑙𝑙𝑗𝑗th iteration.  

Measurement of individual reidentification risk can provide useful insights about the buying 

behaviors of panelists who are at higher risk of reidentification. Our empirical application to the IRI data 

suggests that panelists who are heavier category buyers and less brand loyal are more re-identifiable.  

3.3 Additional Comments on Uniqueness-based Reidentification Risk 
We conclude this section by making a few additional comments on uniqueness-based measures of 

reidentification risk such as unicity and sno-unicity. First, the reidentification risk measured by unicity or sno-

unicity arises from the privacy attack based on record linkage with deterministic matching. The concept of 

record linkage originated in data integration applications (Fellegi and Sunter 1996) where the goal is to increase 

the chance of correct matching such that the combined data contains more accurate information. By contrast, in 
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data privacy applications if a match leads to reidentification then privacy is compromised; as a consequence 

the goal is to lower the chance of correct matching to enhance privacy. Deterministic and probabilistic matching are 

two common matching methods. Zhu et al. (2015) demonstrated based on extensive simulation studies that 

deterministic matching works well for high quality data where identifiers can be uniquely matched, while 

probabilistic matching is preferred for poorer quality data that contain many duplicate or erroneous records 

due to which deterministic matching is likely to return either multiple records or false matches. Although 

probabilistic matching is often preferred in modern data warehousing and data integration due to large scale 

entity matching needs (Dey et al. 1998; Dey 2002; Herzog et al. 2007), the panel data we study in this paper 

have high levels of unique QIDs, implying that deterministic matching can already lead to very high risk of 

reidentification. In such a situation, preventing privacy attacks with deterministic matching is an immediate 

need. We leave the study of reidentification risk under probabilistic matching to future research. 

Second, although following convention we use uniqueness-based measures to quantify the risk of 

reidentification, it is notable that unicity or sno-unicity are not the only measures of privacy risk. Imagine a k-

anonymized dataset in which there are no unique QIDs. Then although unicity and sno-unicity are both 0, 

this does not mean that there is no risk of reidentification. In this case, privacy risk can arise from disclosure 

of certain sensitive attributes, hence it depends on how the sensitive attributes are distributed in each k-

anonymized group. For instance, if all individuals who are included in one k-anonymized group based on 

their QIDs (demographic information) have heart disease, then the risk of disclosure of this sensitive 

information is 100% for anyone belong to this group, even though QID-based matching leads to k different 

people. Privacy models such as l-diversity are designed to protect against the risk of disclosure of sensitive 

information in such scenarios and we discuss this in the end of Section 4. 

4 Protecting Panel Data for k-Anonymity 
To reduce the data linkage-based reidentification risk, we propose a new method – graph-based 

minimum movement k-anonymization (k-MM) – that guarantees k-anonymity while ensuring minimal 

distortion. We define panel data as satisfying k-anonymity if the QID for every record appears for at least k 

different panelists. Unlike the conventional definition of k-anonymity that ignores multiple QIDs per 
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household, the satisfaction of k-anonymity in panel data requires not only that any QID should appear in at 

least k observations, but also for k different individuals. A self-evident property of k-anonymity is that any 

column-wise subset of k-anonymized data also satisfies k-anonymity because the subset has fewer attributes 

in the QID, thereby reducing the amount of information that can be used for linking. In what follows we 

present the proposed k-MM method that is particularly designed for panel data. 

4.1 Graph-based k-Anonymization for Household Panel Data 
Consider the illustrative example in Table 1, which has also been graphically represented in Figure 3. 

Table 1 can be further transformed into the two-way contingency table shown as the matrix A in Table 2, 

where rows are unique values of QID, and columns are unique panelist IDs. The entries take values 1 or 0, 

indicating whether or not a specific QID corresponds to a panelist. This same matrix A was constructed in 

the procedure whereby sno-unicity is computed.  

Table 2: Two-way contingency table before (left) and after (right) protection for the example of Table1 
Matrix A 

 
               

Matrix B 

Quasi-identifier Panelist ID Quasi-identifier Panelist ID 
A B C D A B C D 

QID1 (2, 2, 2) 1 0 0 0 QID1 (2, 2, 2) 0 0 0 0 
QID2 (2, 0, 1) 1 0 1 0 QID2 (2, 0, 1) 1 0 1 0 
QID3 (2, 2, 0) 1 1 0 0 QID3 (2, 2, 0) 1 1 0 0 
QID4 (2, 2, 1) 0 1 1 0 QID4 (2, 2, 1) 1 1 1 0 
QID5 (3, 0, 2) 0 1 0 1 QID5 (3, 0, 2) 0 1 0 1 
QID6 (3, 1, 0) 0 0 1 1 QID6 (3, 1, 0) 0 0 1 1 

We discussed previously (and also saw in Figure 3) that household A is re-identifiable due to the 

unique QID associated with transaction A1, after which all the remaining households become re-identifiable 

sequentially. This can also be seen from Table 2(matrix A), where the first row has only one “1” in column A, 

indicating that QID1 (2, 2, 2) is uniquely “owned” by household A, hence A is re-identifiable. If household A 

is reidentified, column A can be deleted; thereafter households B and C become re-identifiable due to 

uniqueness of QID3 and QID2 respectively. Then, deleting column B and C leads household D re-identifiable.     

This example illustrates that to achieve k-anonymity, each row of matrix A in Table 2 needs to either 

have at least k nonzero entries, or all entries should be zero. If k = 2, row QID1 does not meet this criterion. 

There are three alternative solutions to achieve 2-anonymity, which are also graphically represented in the 

three panels of Figure 4: (1) remove all transaction records associated with QID1, namely, transaction A1 of 
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household A; see Figure 4 panel (a). (2) add a fake transaction record for households B, C or D that is 

identical to QID1, resulting in another 1 in row QID1. For instance, make up transaction D3 for D so that A1 

and D3 have the same QID; see panel (b). (3) alter some attributes of QID1 to make it the same as another 

QID, e.g., QID4; see panel (c). Corresponding to Figure 4(c), matrix B in Table 2 shows that the protection 

alters QID1 to be the same as QID4, so that 2-anonymity is achieved. 

 
Figure 4: A graphical representation of k-anonymization for the household panel data in Table 2. From left 
to right the three types of solutions are: (a) deletion; (b) addition; (c) altering. 

We adopt the altering approach (i.e., Figure 4(c) and Table 2 matrix B) for the development of our k-

MM approach because the other two strategies – deletion and addition – result in larger distortion of the 

original data. For instance, if 20% of transactions are unique in terms of QIDs, we would either delete or 

make up this number of transactions in order to achieve 2-anonymity. For larger k, this number could be 

even larger. Based on our empirical analysis of the household panel data, deleting records to achieve k-

anonymity causes 24% (for k=2) to 55% (for k=7) reduction in total number of observations in the 

unprotected data, which feels unacceptably large (see Table A10 in Appendix D).  

In general, panel data can be considered a pseudo-hypergraph HG(V, E), where V is the set of 

vertices and E is the set of edges. For example, in Figure 3(a) or Table 2 (matrix A), V={A, B, C, D} and 

E={QID1, …, QID6}. It can be a hypergraph because some edges may connect to multiple (>2) vertices, such 

as Figure 4(c) where QID4 (A1, B2, and C2) connects A, B and C. We call it a pseudo-hypergraph because for 

unprotected data, some edges do not connect to a second vertex such as A1 in Figure 3(a). After achieving k-

anonymity, the graph becomes a hypergraph, where each edge connects to at least k vertices. We denote k-

HG(V*, E*) the k-anonymized pseudo-hypergraph, where the set of vertices 𝑉𝑉∗ = 𝑉𝑉 while the set of 

hyperedges 𝐸𝐸∗ ⊆ 𝐸𝐸. This is because some QIDs may no longer exist after the alteration (e.g., QID1 in Table 2 

matrix B). Because such a graphical representation of the problem and its solution is possible, we call our 
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approach graph-based k-anonymization. We illustrate the idea of minimum movement and formulate our k-

MM approach in the next subsection. For notational simplicity, we do not use the graph notation. 

4.2 Formulation of the k-MM Approach 
Suppose there are 𝑚𝑚 panelists in the panel data. Denote ID𝑗𝑗 the 𝑗𝑗th individual’s ID, 𝑗𝑗 = 1, . . . ,𝑚𝑚. We 

first construct the quasi-identifier for each row and let 𝒮𝒮𝑄𝑄 = {QID𝑖𝑖: 𝑖𝑖 = 1, . . . ,𝑛𝑛} be the set of unique quasi-

identifiers among all QIDs. The  𝑛𝑛 × 𝑚𝑚 matrix 𝑨𝑨, as illustrated in Table 2 (matrix A), is then constructed, and 

we denote its entry at 𝑖𝑖th row and 𝑗𝑗th column as 𝑎𝑎𝑖𝑖𝑗𝑗 . Matrix 𝑨𝑨 is likely a large but sparse matrix, where its 

binary entries indicate whether or not the quasi-identifier QID𝑖𝑖 is associated with panelist 𝑗𝑗. Clearly, if the sum 

of row 𝑖𝑖 equals 1, then QID𝑖𝑖 only appears once in the data, hence the corresponding panelist is re-identifiable.  

To achieve k-anonymity, we attempt to find a matrix 𝑩𝑩 = {𝑏𝑏}𝑖𝑖,𝑗𝑗, as illustrated in Table 2, which is a 

transformation of matrix A with the same dimensions and the same row and column names, such that the 

sum of every row is either 0 or larger than or equal to 𝑘𝑘, and then transform matrix 𝑩𝑩 back to the form of 

panel data. In Table 2, for example, the transformation from matrix A to B is to change the first column from 

(1, 1, 1, 0, 0, 0) to (0, 1, 1, 1, 0, 0) and leave all the other columns unchanged. This is equivalent to changing 

the unique QID1 such that it becomes the same as QID4. The resulting matrix B satisfies 2-anonymity because 

the sum of the first row is zero and the sums of all other rows are at least 2, implying that none of the QIDs 

are unique to any panelist. The row sum of zero in matrix B means that the corresponding QID values no 

longer exist after protection. Transforming matrix A before protection to B after protection essentially 

involves moving certain nonzero entries in matrix A, which is equivalent to altering the values of 

corresponding QIDs. However, such data alteration, or equivalently, the movement of nonzero entries in 

matrix A, causes information loss compared to the original data. Therefore, solving for an appropriate matrix 

𝑩𝑩 with minimum distortion is the key to our approach.  

We represent this as an optimization problem, where a natural objective function is to minimize the 

total amount of change of the values of QIDs. In other words, if a “one” in a column of matrix 𝑨𝑨 needs to 

move, it should be moved to the row with the most similar QID. Similarity here is defined using distance 
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measures of the vector of attributes constituting QIDs. For example, in Table 2 (matrix A) 𝑄𝑄𝑄𝑄𝐷𝐷1 = (2, 2, 2) 

is unique, and the closest QID in terms of Euclidean distance is 𝑄𝑄𝑄𝑄𝐷𝐷4 = (2, 2, 1); therefore, we change the 

number of units of Ruffles purchased in transaction A1 from 2 to 1.  

As discussed, the data user may prefer to have smaller distortion in certain attributes than others 

based on their use cases. For instance, household panel data are commonly used to estimate logit brand 

choice models, which are used to determine equilibrium prices of competing brands. The equilibrium mark-

ups of manufacturers in such a setting depend on weekly market shares of brands (Besanko et al. 1998). 

Therefore, brand manufacturers may prefer to have less distortion in the purchases of larger-share brands so 

that the optimal mark-ups obtained from the protected data remain close to those from the unprotected data. 

Our approach is generalizable to different use cases and permits such flexibility by allowing a pre-specified 

vector of weights on the attributes of the QID to be included in computing the distances. For instance, in the 

pricing application we can use the market shares of brands in the unprotected data as the weight vector, 

implying that distortions in purchases of larger-share brands are more costly in computing the distance, hence 

resulting in less distortion in the transformation from matrix A to B.   

To formulate such an optimization problem, let 𝑸𝑸 = (𝑄𝑄1, … ,𝑄𝑄𝐿𝐿) be an 𝑛𝑛 × 𝐿𝐿 matrix where rows are 

𝑛𝑛 unique QIDs and columns are the 𝐿𝐿 attributes of QID. We first obtain an 𝑛𝑛 × 𝑛𝑛 weighted distance matrix 

among rows of 𝑸𝑸(𝒘𝒘) = (𝑄𝑄1𝑤𝑤1, … ,𝑄𝑄𝐿𝐿𝑤𝑤𝐿𝐿), where 𝒘𝒘 = (𝑤𝑤1, … ,𝑤𝑤𝐿𝐿)𝑇𝑇 is a pre-specified weight vector for the 

𝐿𝐿 attributes. Denote 𝒅𝒅𝑖𝑖(𝒘𝒘) the 𝑖𝑖th column (or row) of the weighted distance matrix. Define decision vector 

𝒛𝒛𝑖𝑖𝑗𝑗 to be a unit vector of length 𝑛𝑛 if 𝑎𝑎𝑖𝑖𝑗𝑗 ≠ 0, and a zero vector if 𝑎𝑎𝑖𝑖𝑗𝑗 = 0. Then the distance of moving 𝑎𝑎𝑖𝑖𝑗𝑗 

to 𝑎𝑎𝑖𝑖′𝑗𝑗 in matrix 𝑨𝑨 can be represented as 𝒛𝒛𝑖𝑖𝑗𝑗𝑇𝑇 𝒅𝒅𝑖𝑖(𝒘𝒘), where the 𝑖𝑖′th element in 𝒛𝒛𝑖𝑖𝑗𝑗 is 1. Formally, define 

 𝒛𝒛𝑖𝑖𝑗𝑗 = �
𝒊𝒊𝑛𝑛    if 𝑎𝑎𝑖𝑖𝑗𝑗 ≠ 0 and it is not moved;
𝒊𝒊′𝑛𝑛    if 𝑎𝑎𝑖𝑖𝑗𝑗 ≠ 0 and it is moved from 𝑖𝑖 to 𝑖𝑖′, 𝑖𝑖′ ≠ 𝑖𝑖;
𝟎𝟎𝑛𝑛    if 𝑎𝑎𝑖𝑖𝑗𝑗 = 0,

                        (1)   

where 𝒊𝒊𝑛𝑛 (𝒊𝒊′𝑛𝑛) = (0, … ,0,1,0, … ,0) with the 𝑖𝑖th (𝑖𝑖′th) element being 1 and rest 0’s. Our objective function is 

to minimize the total weighted distance caused by the movement of nonzero entries in matrix A. Thus, the 

optimization problem can be formulated as: 
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 min               ∑𝑚𝑚𝑗𝑗=1 ∑�𝑖𝑖:𝑎𝑎𝑖𝑖𝑗𝑗≠0� 𝒛𝒛𝑖𝑖𝑗𝑗
𝑇𝑇 𝒅𝒅𝑖𝑖(𝒘𝒘),                                                                                                   (2) 

 subject to: ∑𝑚𝑚
𝑗𝑗=1 𝑏𝑏𝑖𝑖𝑗𝑗 > 𝑘𝑘 − 1   or   ∑𝑚𝑚𝑗𝑗=1 𝑏𝑏𝑖𝑖𝑗𝑗 = 0    for each row 𝑖𝑖, 𝑖𝑖 = 1, . . . ,𝑛𝑛,                        (3) 

                       𝑏𝑏𝑖𝑖𝑗𝑗 = 0 or 1,                                                                                                                           (4) 

where 𝑏𝑏𝑖𝑖𝑗𝑗 is the entry of 𝑖𝑖th row and 𝑗𝑗th column in matrix B.  

The objective function (2) minimizes the total weighted distance moved. In general, the value of (2) 

quantifies the distortion resulting from data protection. Constraints (3) guarantee that the row sum of matrix 

B is 0 or at least k. Together with constraint (4), k-anonymity is guaranteed for the protected data. Note that 

the constraint in (4) is needed because otherwise it is possible that some elements in ∑𝑖𝑖 𝒛𝒛𝑖𝑖𝑗𝑗 are greater than 1, 

in which case constraint (3) is still satisfied but k-anonymity may not be achieved.  

The matrix B can be represented using the decision vector 𝒛𝒛𝑖𝑖𝑗𝑗. Specifically, 𝒃𝒃⋅𝑗𝑗 = ∑𝑖𝑖 𝒛𝒛𝑖𝑖𝑗𝑗, hence  

                                  𝑩𝑩 = [∑𝑖𝑖 𝒛𝒛𝑖𝑖1 ∑𝑖𝑖 𝒛𝒛𝑖𝑖2 … ∑𝑖𝑖 𝒛𝒛𝑖𝑖𝑚𝑚]𝑛𝑛×𝑚𝑚.                                                         (5) 

To see (6), let 𝒁𝒁𝑗𝑗 = [𝒛𝒛1𝑗𝑗 𝒛𝒛2𝑗𝑗 … 𝒛𝒛𝑛𝑛𝑗𝑗]𝑛𝑛×𝑛𝑛, and denote 𝒂𝒂⋅𝑗𝑗 and 𝒃𝒃⋅𝑗𝑗 the 𝑗𝑗th columns of matrix 𝑨𝑨 and 𝑩𝑩, 

respectively. According to the definition of 𝒛𝒛𝑖𝑖𝑗𝑗 in (1), it is easy to see that 𝒁𝒁𝑗𝑗 is a matrix such that 𝒁𝒁𝑗𝑗𝒂𝒂⋅𝑗𝑗 =

𝒃𝒃⋅𝑗𝑗. Since 𝒛𝒛𝑖𝑖𝑗𝑗 = 𝟎𝟎 if 𝑎𝑎𝑖𝑖𝑗𝑗 = 0, then 𝒁𝒁𝑗𝑗𝒂𝒂⋅𝑗𝑗 = ∑𝑖𝑖 𝒛𝒛𝑖𝑖𝑗𝑗 = 𝒃𝒃⋅𝑗𝑗.  

Since the k-anonymization problem is NP-hard, for computational efficiency, we propose the 

following heuristic by adopting the idea of divide-and-conquer. More specifically, instead of solving the 

problem for the entire data, we split the matrix A row-wise into several sub-matrices and solve it for each 

sub-matrix separately. In fact, our graph representation and formulation illustrate the opportunity to use a 

divide-and-conquer method because constraints (3) and (4) apply to each row of matrix A independently. We 

conduct extensive simulation studies to demonstrate that the proposed heuristic substantially reduces the 

computing time at a modest cost of optimality (see Appendix B.1). Our simulation also explores the scale of 

subproblems for different sizes of the original panel data and shows that the computational cost is low for 

panel data of moderate to large size (see Appendix B.2). We implement our data protection method in 

Gurobi (9.1.2), and the details can be found in Appendix A.  

A heuristic for the k-MM approach  
Input: Panel data at transaction-level  
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Result: k-anonymized household panel data at transaction-level 
1. Construct QIDs based on the input data and transform it to matrix A. Meanwhile, obtain 

the matrix of weighted distance between all QIDs.4 
2. Randomly (or use clustering-based strategy) split matrix A row-wise into 𝑞𝑞 submatrices 

𝑨𝑨(1), … ,𝑨𝑨(𝑞𝑞) that have similar number of rows.5 
3. For each submatrix, solve the optimization problem (1)-(4), and obtain the solutions  

𝐵𝐵(1)∗ , … ,𝐵𝐵(𝑞𝑞)∗as in (A5, see Appendix A). Then combine them to obtain the solution B∗. 
4. Transform matrix B∗ back to the transaction level data. 

The proposed k-MM approach can be further extended to achieve l-diversity (Machanavajjhala et al. 

2006), a privacy model that goes beyond k-anonymity. As mentioned, l-diversity is intended to protect against 

(sensitive) attribute disclosure. It requires that the sensitive attribute of individuals in each k-anonymized 

group must take at least l different values. The graph representation of the proposed k-MM approach (i.e., 

matrix A and B) natually facilitates an additional constraint to accommodate l-diversity. To see this, let 𝒔𝒔 =

(𝑆𝑆1, … , 𝑆𝑆𝑚𝑚) be the values of the senstitive attribute of the 𝑚𝑚 individuals with p distinct values. Thinking of 

the matrix 𝑩𝑩 described previously, l-diversity can be achieved as follows: for each row of 𝑩𝑩 where the row 

sum is nonzero, the set {𝑆𝑆𝑗𝑗:𝑏𝑏𝑖𝑖𝑗𝑗 ≠ 0} must have at least l distinct values. Mathematically, this constraint can 

be represented as 

                    ‖𝒃𝒃𝑖𝑖⋅𝑺𝑺𝑑𝑑𝑑𝑑𝑚𝑚‖0 ≥ 𝑙𝑙   or   ‖𝒃𝒃𝑖𝑖⋅𝑺𝑺𝑑𝑑𝑑𝑑𝑚𝑚‖0 = 0    for each row 𝑖𝑖, 𝑖𝑖 = 1, . . . ,𝑛𝑛,                      (6) 

where 𝒃𝒃𝑖𝑖⋅ = (𝑏𝑏𝑖𝑖1,𝑏𝑏𝑖𝑖2, … , 𝑏𝑏𝑖𝑖𝑚𝑚) is the 𝑖𝑖th row of matrix 𝑩𝑩, 𝑺𝑺𝑑𝑑𝑑𝑑𝑚𝑚 is the 𝑚𝑚 × 𝑝𝑝 dummy matrix converted from 

the sensitive attribute 𝒔𝒔, and ‖𝒂𝒂‖0 is the cardinality of vector 𝒂𝒂, which is the number of nonzero entries. 

Constraint (6) can be formulated as a set of linear constraints (shown in Appendix A), so that the entire 

optimization problem remains a linear program and the proposed heuristic still applies.6  

 
4 A small random variable (e.g., uniform between 0 and 0.1) can be added in calculating the distance matrix to help resolve ties. 
5 In our empirical analysis, we use random split and set q=5 to make computing time practically feasible. 
6 Our empirical results focus on k-anonymity only and do not include results for l-diversity. The reasons are the following: (1) 
this paper focuses on protecting against identity disclosure risk while l-diversity is intended to protect against attribute disclosure 
risk, and in our empirical application we do not assume any sensitive attributes; (2) we compare the performance of our 
approach with benchmark methods that are all intended for k-anonymity due to the focus of this study; it is unclear how those 
benchmark methods can be extended to achieve l-diversity. Thus, we only report results of k-anonymity for a fair comparison. 
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5 Empirical Applications 
Panel data are procured and analyzed by manufacturers to obtain insights into buyer behaviors and to 

develop marketing strategies. Protection of the data by alteration will inevitably affect these insights. We 

discuss the results of application of our protection approach to panel data in two important marketing 

contexts: household purchases of consumer products, and physican choices of prescription drug treatments. 

In both settings the data are gathered by market research agencies who provide assurances of privacy to the 

panelists (households and physicians, respectively). While in this section we discuss in depth the application 

to household data, for the physician data we only show summary metrics in section 5.5 for reasons of space.  

5.1 Reidentification Risk for Salty Snack Category  
We analyze IRI panel data (Bronnenberg et al. 2008) on purchasing of salty snacks for the Eau Claire, 

WI market for the year 2012. The salty snack category is suitable because multi-brand, multi-unit buying on a 

single shopping trip is rare, making the data more suitable for brand choice modeling. We limit our sample to 

purchases made in the largest store by category volume. First, we report the reidentification risk as we include 

a successively increasing number of the largest market-share brands, ranging from 3 to 15. As in our earlier 

example, the QID consists of the purchase week and the number of units of the brands purchased. We 

expect that as the number of brands included in the analysis increases, the reidentification risk should grow 

because more attributes are available to make a QID unique.7  

 
Figure 5: Reidentification risk based on unicity and sno-unicity for different number of brands considered in 
QID in the salty snacks category in the largest retail store in Eau Claire, WI. 

 
7 We do not include marketing mix variables such as prices as QIDs because these are homogeneous across shopping trips of 
different households within a store-week.  
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Figure 5 shows the reidentification risk measured in two ways: first, using the traditional measure of 

unicity, and second, using our proposed sno-unicity measure. We see that the difference between unicity and 

sno-unicity is large regardless of the number of brands considered, indicating that the unicity measure greatly 

understates the privacy risks in the data. For instance, when the largest 10 brands are included in the sample, 

unicity reports that 41.4% of households are re-identifiable, whereas the true percentage reported by sno-

unicity is alarmingly high at 77.5%. We also observe that as the number of brands increases, the risk of 

reidentification increases as expected. We find similar patterns for other product categories as shown in 

Tables A3 and A4 in Appendix D. The reason is that brands being added to the analysis have smaller market 

shares (see Table A5 in Appendix D), hence they are less likely to be found in QIDs. This implies that less 

popular brands do not help an intruder identify a large number of panelists, although the few customers who 

do purchase these brands might be easy to identify. 

 
Figure 6: Distribution of individual reidentification risk (IR) 

Next, we assess the individual reidentification risk (IR, as in Definition 2) for the case of 10 brands. 

This sample includes 6,117 shopping trips and 1,009 household panelists. As noted, in this case 77.5% of the 

1,009 panelists are reidentifiable. Figure 6 shows, from left to right, the histogram of IR for all re-identifiable 

panelists; the distribution of IR by iteration 𝑙𝑙; and the number of re-identifiable panelists in each iteration. We 

find considerable heterogeneity in the IR across panelists. To assess whether high reidentification risk is 

associated with observable purchasing behaviors, we construct three variables for each panelist: average 

number of units purchased per transaction, number of brands ever bought, and total dollar spend across 

trips. We use these variables as predictors in a logistic model to classify panelists into high and low IR split by 

median IR. Coefficient estimates are shown in Appendix D (Table A6). We find that all three predictors are 
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statistically significant, and the signs are intuitive. Heavier buyer (more total spend and more units bought per 

transaction) and those with less brand loyalty (more brands ever bought) are at greater risk of reidentification.    

The following subsections assess the loss of information due to protection of the household panelists 

using our proposed k-MM approach, for different levels of k. To assess the loss of data utility, we consider 

three analyses. First, we assess the changes in the original data and quantify the overall distortion using two 

metrics. Second, we measure the distortion in three commonly used marketing metrics. Third, we measure 

the changes in the parameter estimates of a brand choice model applied to the data. Our results are based on 

protected data with equally-weighted QID attributes. In Section 5.6 we demonstrate the use of unequal 

weights in the context of determining equilibrium prices. 

5.2 Overall Data Distortion 
We consider two measures of the overall distortion of the protected relative to the unprotected 

(transaction-level) data. These two measures are based on a cell-by-cell comparison of the two datasets. To 

define notation, say each of the unprotected and protected transaction-level datasets have 𝑇𝑇 observations and 

𝐿𝐿 columns (𝐿𝐿 attributes in QID), and let 𝑤𝑤𝑗𝑗 be the weight for attribute 𝑙𝑙. Let 𝑦𝑦𝑖𝑖𝑗𝑗 be the entry in the 𝑖𝑖th row 

and 𝑗𝑗th column of the unprotected data, and 𝑦𝑦′𝑖𝑖𝑗𝑗 be the corresponding entry in the protected data. 

Changed cells % is defined as  

Prop{𝑦𝑦𝑖𝑖𝑗𝑗 ≠ 𝑦𝑦′𝑖𝑖𝑗𝑗} = 1
𝑇𝑇×𝐿𝐿

∑𝑇𝑇𝑖𝑖=1 ∑𝐿𝐿𝑗𝑗=1 𝕀𝕀(𝑦𝑦𝑖𝑖𝑗𝑗 ≠ 𝑦𝑦′𝑖𝑖𝑗𝑗) × 100%  

Mean squared deviation (MSD) is defined as  

MSD = 1
𝑇𝑇×𝐿𝐿

∑𝑇𝑇𝑖𝑖=1 ∑𝐿𝐿𝑗𝑗=1 𝑤𝑤𝑗𝑗(𝑦𝑦𝑖𝑖𝑗𝑗 − 𝑦𝑦′𝑖𝑖𝑗𝑗)2.  

The second measure, mean squared deviation, is equivalent to (2) when Euclidean distance is applied. 

Table 3 (Panel A) summarizes the information loss in our k-MM anonymized data based on these 

two metrics. For each k, the reported results are averages over 100 replicates due to the randomness 

introduced in the proposed heuristic. These metrics reveal that as expected, there is larger information loss 

with increasing k. This is a demonstration of the classic R-U tradeoff curve between privacy (risk) and 

accuracy (utility) (Duncan and Stokes 2004; Reiter 2005). However, even when k=7, implying that any 
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panelist is not different from at least six other panelists in the data, the percentage of cells changed in the 

original data is very small (3.337%).  

Table 3: Information loss due to protection for different levels of k-anonymity. 
  k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 
Panel A. Overall information loss in transaction-level data 

Changed Cells (%) 1.17 1.687 2.185 2.624 2.984 3.337 
MSD 0.094 0.11 0.128 0.14 0.149 0.157 

Panel B. MAPD (%) in brand metrics  
Market share 0.442 0.709 0.983 0.965 1.158 1.229 

Share of Category requirements  0.664 0.529 0.681 0.733 0.772 0.857 
Brand Switching probability 1.021 0.993 1.324 1.087 1.285 1.233 

5.3 Distortion in Marketing Metrics 
Next, we consider the distortion in three marketing metrics that are commonly computed using 

household panel data. The degree of distortion for each metric is measured as the mean absolute percentage 

deviation (MAPD)8 between the metrics based on unprotected and protected data. Brand market share is 

defined as the number of choices of each brand divided by the total number of choices of all studied brands 

in the sample, expressed as a percentage. Share of category requirements (SCR) is commonly used as a 

measure of brand loyalty (Bowman and Narayandas 2001). For each brand 𝑗𝑗, the SCR is measured at the 

panelist level as the number of purchases of brand 𝑗𝑗 divided by the total number of purchases in the category, 

expressed as a percentage and averaged across panelists. Brand switching is a vector of length 𝐽𝐽, computed 

from the 𝐽𝐽 × 𝐽𝐽 brand switching matrix 𝑺𝑺. The entry in the 𝑗𝑗th row and 𝑗𝑗′th column of 𝑺𝑺, denoted as 𝑠𝑠𝑗𝑗𝑗𝑗′, is 

the count of pairs of consecutive trips within a panelist wherein brand 𝑗𝑗 was chosen followed by brand 𝑗𝑗′, 

summed across panelists. Then brand switching for brand 𝑗𝑗 is defined as �1 − 𝑠𝑠𝑗𝑗𝑗𝑗
∑𝐽𝐽
𝑗𝑗′=1

𝑠𝑠𝑗𝑗𝑗𝑗′
� ∗ 100%.  

As a result of the small distortions in the data discussed previously, we expect to see, and find in 

Table 3 (Panel B), that the distortion in key marketing metrics is very small as well. For instance, with k=7 the 

 

8 MAPD is defined as 1
𝐽𝐽
∑𝐽𝐽𝑗𝑗=1 �

𝑥𝑥′𝑗𝑗−𝑥𝑥𝑗𝑗
𝑥𝑥𝑗𝑗

�× 100%, where 𝑥𝑥𝑗𝑗  and 𝑥𝑥′𝑗𝑗  are statistics (in general) of brand 𝑗𝑗 based on unprotected and 

protected data, respectively. 
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average absolute distortion in market share of each brand is 1.229% (this is not in percentage points, but a 

percentage of the true market share). 

5.4 Distortion in Parameters of Brand Choice Model 
A common application of panel data is brand choice modeling, which reveals intrinsic brand 

preferences, responsiveness to marketing mix variables, as well as heterogeneity in these parameters across 

panelists. Here we use the widely employed Hierarchical Bayesian (HB) random effects multinomial logit 

model (Allenby and Rossi, 1998). Details of the model are shown in Appendix C. We enhance the 

transaction-level brand choices in the unprotected data with information on the following marketing mix 

variables for each of the ten brands: price per 16-ounce (standardized) unit, and binary indicators of 

Promotion, in-Store Display, and Feature Advertising.9 Table 4 shows the market share and descriptive 

statistics of the marketing mix variables of each of the ten brands. 

Table 4: Share of choices and summary statistics of marketing mix variables for largest selling ten brands. 
   Proportion of shopping trips10 
Brand Share of 

choices 
Mean Retail Price 
($ per 16-ounces) 

Promotion In-Store 
Display 

Feature 
Advertising 

Lays Natural 0.193 4.867 0.461 0.690 0.278 
Old Dutch 0.169 3.801 0.734 0.130 0.053 
Cheetos 0.110 4.890 0.371 0.137 0.170 
Barrel O Fun 0.094 3.545 0.161 0.064 0.029 
Sunchips 0.089 5.168 0.812 0.594 0.138 
Lays 0.083 5.196 0.404 0.042 0.246 
Tostitos Natural 0.077 3.819 0.863 0.530 0.217 
Doritos 0.065 4.368 0.325 0.202 0.068 
Wavy Lays 0.062 4.759 0.701 0.156 0.284 
Old Dutch Ripples 0.059 5.553 0.737 0.419 0.139 

 
We show in Table 5 parameter estimates based on the unprotected data and k-anonymized data, for 

each of k = 2,...,7. For each k, we estimate models on 100 replicates of protected data in order to capture the 

variability due to the randomness included in the proposed heuristic. For the unprotected data we show the 

mean coefficient estimates over all households based on the last 100 MCMC draws from the posterior 

 
9 Details of data preparation can be found in Web Appendix C. 
10 For some brands the proportion of promotion and in-store display may appear to be very high to those who are familiar with 
point-of-sale data for frequently purchased goods. We also computed these proportions in a few other categories and found that 
the numbers were particularly high for salty snacks, suggesting this may be a characteristic of this category. 
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distribution. For the protected data, for each k, we show the average across the 100 replications of the mean 

coefficient estimates based on the last 100 MCMC draws from the posterior distribution. Comparing the 

unprotected and protected coefficient estimates, none of the signs change relative to the unprotected data, 

and the magnitudes are very similar. We also present the McFadden R2 values (again, for the protected data 

these are averages across the 100 replications), which also change negligibly. To quantify the loss of utility due 

to protection, we show in the last row of Table 5 the MAPD of the coefficient estimates for the four 

marketing mix variables. We can see that the overall trend is for MAPD to increase with k, again indicating 

the tradeoff between reidentification risk and data utility. However, the magnitude of the deviation between 

estimates based on the unprotected data versus protected data is small, ranging from 6.17% for k=2 to 8.75% 

for k=7, where k=7 implies a higher level of privacy.  

Table 5: Mean values of parameter estimates from Hierarchical Bayesian random effects logit model.11  
 Unprotected 

Data 
k-anonymized Data 

Marketing mix variables: k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 
logPrice -1.453 -1.351 -1.348 -1.393 -1.369 -1.288 -1.292 
Promotion 0.986 1.101 1.095 1.123 1.122 1.114 1.157 
Display 3.350 3.251 3.252 3.264 3.275 3.283 3.246 
Feature 1.675 1.727 1.740 1.675 1.651 1.656 1.617 

McFadden R2 0.609 0.618 0.618 0.618 0.615 0.615 0.611 
MAPD of marketing mix 
coefficient estimates (%) - 6.171 6.274 5.164 5.812 6.877 8.753 

 
Finally, Figure 7 shows the estimated posterior distributions of the coefficients for marketing mix 

variables based on unprotected and protected data for each k. Results for the protected data for each k are 

based on one randomly chosen replicate out of 100. We see that for each marketing mix variable the 

distributions based on protected and unprotected data are similar, again indicating that the protected data 

preserve the utility of the original data with regard to learning about heterogeneity in consumers’ 

responsiveness to marketing activities. Importantly, as discussed these heterogeneity distributions cannot be 

estimated reliably if aggregation is employed to protect the data.  

 
11 Brand-specific constants are shown in Web Appendix D, Table A8, for reasons of space. Posterior standard deviations of the 
coefficient estimates are reported in Table A9. The results for protected data are averages over 100 replicates. 
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Figure 7: Distribution of posterior means for individual coefficient estimates of marketing mix variables. 

5.5 Comparison with Other Data Protection Approaches 
We compare our proposed approach to several alternative data protection methods, including (1) 

aggregation, (2) clustering, (3) record deletion, (4) random swapping, and (5) noise addition based on an 𝜖𝜖-

differential privacy (𝜖𝜖-DP) model. Table 6 briefly describes each of these approaches.  

Table 6: Benchmark data protection approaches 
Privacy protection 
method Protection mechanism Privacy achieved 

Aggregation 

Aggregate purchases across panelists in each week, so that the 
protected data are weekly sales data. Aggregation involves 
summing individual choices by brand and averaging market-mix 
variables, within each week. 

N/A 

Clustering 
For each week, find certain number of clusters based on the values 
of QIDs. Then aggregate purchases of all panelists within each 
cluster. A detailed implementation is outlined in Appendix E. 

k-anonymity 

Record deletion Delete the purchases that have up to k-2 duplicates across different 
panelists. See Figure 4(a) for illustration. k-anonymity 

Random swapping  Randomly choose 𝛼𝛼% of observations and swap their purchases.  𝛼𝛼% alteration 

Noise addition  

Following Schneider et al. (2017), synthetic brand choices are 
generated according to different level of privacy that is controlled 
by 𝜖𝜖, 𝜖𝜖 > 0; the smaller is 𝜖𝜖 the stronger the protection. Detailed 
implementation is outlined in Appendix E. 

Synthetic data 

Among these benchmark approaches, both clustering and record deletion can achieve k-anonymity, 

hence results from these approaches can be directly compared with our proposed method. Figure 8 shows 

that for the same privacy level (k), both clustering and simple deletion lead to substantially higher information 
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loss than our proposed method. The compared metrics include the MAPD of the coefficient estimates for 

the brand choice model (e.g., last row of Table 5) and the descriptive statistics reported in Table 3. We do not 

report changed cells and MSD for the record deletion method because this protection mechanism reduces the 

amount of data by construction, so these two metrics are not defined. It is notable that a disadvantage of 

clustering is that the choice of the number of clusters to achieve a particular k is not trivial. Sometimes k-

anonymity may not be achieved if there is a small number of unique customers in a given week. For example, 

if there are only 2 unique customers who made purchases during a particular week, then clustering can 

achieve at most 2-anonymity by altering the purchases of the 2 customers to be the same. 

 
Figure 8: Comparison of information loss between proposed method and two benchmark methods – 
clustering and deletion – in the salty snacks data. For coefficients, market share, SCR (share of category 
requirements) and BSP (brand switching probability), the measure of information loss on the vertical axis is 
MAPD (%). Percentage of changed cells and MSD (mean squared deviation) are measured based on 
transaction-level data. X-axis shows levels of k for k-anonymity. Error bars show the standard deviation 
obtained from 100 replicates.12 

The other three benchmark approaches – aggregation, random swapping, and noise addition – 

cannot achieve the protection goal of k-anonymity, because they do not reduce the uniqueness of QIDs. As a 

result, we cannot directly compare the information loss between these methods and our proposed method at 

particular privacy levels. Instead, in Table 7 we average the information loss of our proposed method across 

k=2,…,7, and compare it to the information loss incurred at a moderate privacy level for the random 

 
12 Record deletion does not involve randomness so standard deviation is not computed.  
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swapping and the noise addition approaches. To illustrate we choose 𝛼𝛼 = 20 (20% random swapping) and 

𝜖𝜖 = 2, meaning that the odds of any individual being in the data is bounded above by 𝑒𝑒2(≈ 7.4) according to 

the definition of 𝜖𝜖-differential privacy13 (Dwork 2006). Table 7 shows that the proposed method results in 

the least information loss in every metric. Note that we do not include results from aggregation as this 

approach completely removes all consumer-level information; as a result, only one comparison metric can be 

computed – the MAPD of coefficients – which at 55.1% is much larger than the proposed method.14   

Table 7: Comparison of information loss between proposed method (average across k = 2, …, 7) and 
20% random swapping and noise addition (𝜖𝜖 = 2). Compared metrics are the same as those in Figure 7. 

 Proposed (avg. k=2,…,7) 20% random swapping Noise addition (𝜖𝜖 = 2) 
Coefficients* 6.461 9.326 12.650 
Market share* 0.914 1.490 21.555 
SCR* 0.706 7.263 13.731 
BSP* 1.157 4.564 11.154 
Changed cells (%) 2.331 3.720 11.568 
Mean Squared Deviation 0.130 0.474   0.843 

* The reported measures are MAPD% 

5.6 Weighted Cost of Distortion in Determining Equilibrium Mark-ups   
We demonstrate that our data protection approach flexibly allows the user to specify different 

degrees of distortion in different QID attributes. Brand choice models have been used to determine 

equilibrium wholesale prices in oligopolistic markets. The optimal mark-up on cost for manufacturer of brand 

𝑗𝑗 under the assumption of vertical Nash competition between manufacturers selling through a common 

retailer is given by 1
𝛼𝛼�1−𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑗𝑗�

, where 𝛼𝛼 is the estimated price coefficient from a multinomial logit brand 

choice model and 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑗𝑗 is the estimated market share of brand 𝑗𝑗 (see equation 7a in Besanko et al. 1998). A 

user interested primarily in determining equilibrium prices may choose weights that result in smaller 

distortion in market shares of larger-share brands while allowing greater distortion in market shares of 

smaller-share brands. 

 
13 In practice, 𝜖𝜖 ranges from 0.1 to 4.6, which result in the upper bound of odds being 1.1 and 100, respectively. 
14 We apply the traditional logit model to estimate aggregate-level (i.e., homogeneous) parameters, while recognizing that studies 
such as Berry, Levinsohn and Pakes (1995), Besanko, Dube and Gupta (2003), Musalem et al. (2009) and others use aggregate data 
to estimate heterogeneous (individual-level) parameters for the brand choice model. 
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Using the household panel data for salty snacks, we re-run the protection with unequal weights for 

each of the ten brands. Specifically, we use brands’ market shares calculated based on the unprotected data as 

the weight vector and compute the weighted distance matrix as outlined in Step 1 of our heuristic, while all 

other steps remain the same. Figure 9 depicts the MAPD (over 100 replicates) of total sales for the three (out 

of 10) brands that have largest (Lays Natural), median (Wavy Lays), and smallest (Sunchips) market shares. 

Comparing the unweighted (left panel) and weighted (right panel) results, we see that the largest brand suffers 

smaller distortion under weighting, the smallest brand suffers larger distortion, while the median brand is 

relatively unaffected. These findings are as expected based on the formulation of our k-MM approach and 

provide assurance that the proposed protection procedure can be used to differentially distort QID attributes 

as desired by the data user. Additional simulation results also confirm these findings (see Appendix B.3). 

 
Figure 9: Distortion of sales measured by MAPD of the largest (Lays Natural), median (Sunchips) and 
smallest (Wavy Lays) market share brands under unweighted (left panel) and weighted (right panel) 
protection. 
 
5.7 Summary of Results for Physician Prescribing Data 

To further demonstrate the usefulness and performance of our proposed k-MM data protection 

method, we apply it to prescribing behavior of physicians in the US in the statin category. The data were 

collected by a market research firm from a physician panel that is a representative sample of the physician 

universe. Our data include 14,995 prescriptions written over a 24-month period by 448 physicians for three 

major statin brands: Lipitor (produced by Pfizer), Zocor (Merck), and Crestor (AstraZeneca), and an 

alternative prescription option called “nondrug treatment”. The major marketing activity of interest is 

detailing, or salesperson visits to physicians. A detailed description of the dataset is provided in Liu et al. 

(2016); we show descriptive statistics in Table A11 in Appendix F. We apply the Hierarchical Bayes random 



35 
 

effects multinomial logit model to the prescription choices of physicians. Coefficient estimates are shown in 

Table A12 in Appendix F. 

Analogous to Figure 8 and Table 7, we compare the information loss due to the proposed protection 

method and benchmark methods in Figure 10 and Table 8. Again, we find that the proposed method leads to 

smaller information loss than all benchmark methods, except for small MAPDs of market share. 

 
Figure 10: Comparison of information loss between proposed and two benchmark methods – clustering and 
deletion – for physician prescribing data. For coefficients, market share, SCR (share of category requirements) 
and BSP (brand switching probability), the information losses are MAPDs (%). Changed cells and MSD 
(mean squared deviation) are measured based on the transaction-level data. X-axis shows levels of k for k-
anonymity. The error bars show the standard error obtained from 100 replicates. 

 

Table 8: Comparison of information loss in physician prescribing data between proposed method 
(average across k = 2, …, 7) and 20% random swapping, noise addition (𝜖𝜖 = 2), and aggregation. 
Compared metrics are the same as those in Figure 8. 

 Proposed (avg. k=2,…,7) 20% random swapping Random noise (𝜖𝜖 = 2) 
Coefficients* 6.841 18.312 36.718 
Market share* 1.099 1.546 8.373 
SCR* 0.892 3.592 10.443 
BSP* 1.377 3.514 3.979 
Changed cells (%) 6.619 8.674 16.633 
Mean Squared Deviation 0.329 0.632 0.886 

* The reported measures are MAPD% 

6 Conclusion 
Our investigation revealed a high risk of reidentification of panelists in two commonly used market 

research datasets: household panel data gathered by IRI and AC Nielsen, and physician prescription writing 

behaviors. We have also shown that the traditional measure of reidentification risk – unicity – can 
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significantly understate the risk because it does not account for the longitudinal nature of the data. We 

proposed a measure of reidentification risk – sno-unicity – that is better suited to the longitudinal nature of 

panel data. Finally, we have proposed a solution to protect the data via alteration that guarantees k-anonymity 

and have demonstrated that in both empirical applications, the utility of the data for typical uses by marketing 

managers is reduced only to a modest degree. Our empirical results also show that compared to several 

alternative protection methods, the loss of utility resulting from our approach is much smaller.  

Our proposed k-MM approach has several advantages. First, unlike commonly used generalization 

and suppression-based methods, our approach neither requires a predefined domain generalization hierarchy, 

which can be subjective and arbitrary, nor deletes any observations. Second, our approach integrates 

flexibilities that allow users to choose different levels of distortion for different attributes. Third, the graph 

representation of our approach naturally facilitates an additional constraint to achieve l-diversity, a privacy 

model that is intended to protect against sensitive attribute disclosure. Finally, and most importantly, the 

essence of our approach is a linear program that minimizes the cellwise distortion between the protected data 

and the original data. Therefore, a high level of utility in the original data is preserved for any analysis in 

general, not limited to a specific application. We should also note that our method can be applied not only to 

numerical but also categorical variables as long as a distance metric is predefined for the vector of QIDs. 

Our findings are important because typical approaches to protecting data against reidentification are 

known to be inadequate to achieve the dual objectives of increasing data privacy and maintaining data utility. 

These include access-control through data security protocols, whose vulnerability is demonstrated by 

thousands of data breaches each year (Verizon 2019). Further, several studies have demonstrated that 

deidentifying data provides insufficient protection against linkage attacks (Narayanan and Shmatikov 2008; 

Benitez and Malin 2010). This implies that even though data providers may be taking all reasonable 

precautions to protect their panelists, including those required by law, the uniqueness of purchasing patterns 

creates a privacy vulnerability. Although much of the data involved in these settings may not be considered 

sensitive, the reputational damage to both the data-collecting organization and the individual if any sensitive 

information is leaked is potentially high.  
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Although our empirical applications focused on two widely used data sources, the method we have 

proposed can be applied in many settings in which individual-level data are gathered via panels, and where 

privacy concerns arise. Examples include Sensor Tower’s large panel of mobile app users around the world 

(Rogers 2021), Comscore’s panel of individuals who report web browsing, and Nielsen’s TV and Radio 

panels. In each of these cases, the uniqueness of reported behaviors creates the possibility of re-identification 

of the panelist by an intruder with external data. In addition to the possibility that some data of identified 

panelists may be sensitive, an additional risk in market research settings is that identified panelists could be 

incentivized by motivated intruders to record biased data. We recommend that organizations that collect and 

share purchasing data at the individual-level should consider data protection solutions like ours, in addition to 

routine measures such as removal of direct demographic identifiers. 

Next, we briefly outline some limitations of our work and directions for future research. While panel 

data gathered via market research remain crucially important in many industries, growing privacy regulations 

are forcing organizations to seek alternative forms of data. Further, as discussed, our study follows the 

conventional setting in which reidentification occurs through deterministic data linkage. Reidentification, 

however, can also be done through probabilistic linkage, which is a practically useful concept in database 

management, but requires a separate and comprehensive study in the data privacy context. Finally, while we 

examined the numerical properties of our proposed approach through simulation studies, future work should 

examine its theoretical properties, such as the rate of convergence and computational complexity. 
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A. Implementation of k-MM approach 
Let 𝑠𝑠𝑗𝑗 be the 𝑗𝑗th column sum of matrix 𝑨𝑨𝑛𝑛×𝑚𝑚, and 𝑠𝑠 = ∑𝑚𝑚𝑗𝑗=1 𝑠𝑠𝑗𝑗 = ∑𝑖𝑖,𝑗𝑗 𝕀𝕀(𝑎𝑎𝑖𝑖𝑗𝑗 ≠ 0), which is the 

total number of nonzero entries in matrix 𝑨𝑨. According to (1), there are in total 𝑠𝑠 non-zero decision vectors , 

i.e. {𝒛𝒛𝑖𝑖𝑗𝑗:𝑎𝑎𝑖𝑖𝑗𝑗 ≠ 0}, for which we need to solve. We define a single decision vector 𝒛𝒛 of length 𝑛𝑛 × 𝑠𝑠, which is 

a long vector of the 𝑠𝑠 decision vectors 𝒛𝒛𝑖𝑖𝑗𝑗. Since the constraint (3) has an “or” condition, we need another 

decision vector of length 𝑛𝑛, denoting 𝒗𝒗. Then, the constraints (3) and (4) can be re-written as below:  

𝐶𝐶1𝒛𝒛 − 𝑞𝑞𝐈𝐈𝑛𝑛𝒗𝒗 ≤ 𝟎𝟎;                                                                           (A1) 

𝐶𝐶1𝒛𝒛 − 𝑘𝑘𝐈𝐈𝑛𝑛𝒗𝒗 ≥ 𝟎𝟎;                                                                           (A2) 

𝐶𝐶2𝒛𝒛 + 𝟎𝟎𝒗𝒗 = 𝟏𝟏;                                                                               (A3) 

𝐶𝐶3𝒛𝒛 + 𝟎𝟎𝒗𝒗 ≤ 𝟏𝟏;                                                                               (A4) 

(𝒛𝒛,𝒗𝒗) are binary. 

 Here 𝐶𝐶1 = 𝟏𝟏𝑠𝑠 ⊗ 𝐈𝐈𝑛𝑛, is an 𝑛𝑛 by 𝑛𝑛𝑠𝑠 matrix, 𝐶𝐶2 = 𝐈𝐈𝑠𝑠 ⊗ 𝟏𝟏𝑛𝑛, is an 𝑠𝑠 by 𝑛𝑛𝑠𝑠 matrix, and 𝐶𝐶3 = 𝐈𝐈𝑚𝑚 ⊗ {𝟏𝟏𝑠𝑠𝑗𝑗 ⊗

𝐈𝐈𝑛𝑛}𝑗𝑗=1𝑚𝑚 , is an 𝑛𝑛𝑛𝑛 by 𝑛𝑛𝑠𝑠 matrix, where ⊗ denotes the kronecker product operator. The constant 𝑞𝑞 is an 
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arbitrary large number such that (A1) and (A2) together represent the constraint (3). More specifically, for 

those rows of matrix 𝑩𝑩 where 𝑣𝑣 = 0, the sum is zero, and for 𝑣𝑣 = 1 the sum is greater than or equal to 𝑘𝑘. 

The constraint (A3) ensures that each 𝒛𝒛𝑖𝑖𝑗𝑗 where {𝑖𝑖:𝑎𝑎𝑖𝑖𝑗𝑗 ≠ 0}, is a unit vector. The inequality (A4) ensures that 

no element in the matrix 𝑩𝑩 can exceed 1, which is equivalent to constraint (4). 

Note that it is possible that an individual may have multiple quasi-identifiers that are identical. This 

results in a non-binary matrix 𝑨𝑨. In this case, the matrix 𝑩𝑩 as defined in (5) may not be the solution we need. 

However, since 𝒁𝒁𝑗𝑗𝒂𝒂⋅𝑗𝑗 = ∑𝑖𝑖 𝒛𝒛𝑖𝑖𝑗𝑗 = (𝑏𝑏1𝑗𝑗, 𝑏𝑏2𝑗𝑗, . . . , 𝑏𝑏𝑛𝑛𝑗𝑗) holds when 𝑨𝑨 is a binary matrix, then by replacing 

∑𝑖𝑖 𝒛𝒛𝑖𝑖𝑗𝑗 with 𝒁𝒁𝑗𝑗𝒂𝒂⋅𝑗𝑗, a general solution of matrix B becomes to  

𝑩𝑩∗ = [𝒁𝒁1𝒂𝒂⋅1 𝒁𝒁2𝒂𝒂⋅2 … 𝒁𝒁𝑚𝑚𝒂𝒂⋅𝑚𝑚]𝑛𝑛×𝑚𝑚,                                             (A5) 

 where 𝒁𝒁𝑗𝑗 = [𝒛𝒛1𝑗𝑗 𝒛𝒛2𝑗𝑗 … 𝒛𝒛𝑛𝑛𝑗𝑗]𝑛𝑛×𝑛𝑛, and 𝒂𝒂⋅𝑗𝑗 is the 𝑗𝑗th column of matrix 𝑨𝑨. 

In solving this optimization problem, one of the main challenges is to handle the large data matrix A. 

To be computationally efficient, we propose to use a divide-and-conquer algorithm. Specifically, we split the large 

matrix A row-wise into several smaller submatrices. For each submatrix, the optimal solution can be obtained 

efficiently. Then the solution to the original problem (matrix A) is the combination of the solutions of the 

subproblems. A simple strategy for splitting matrix A could be random splits with equal sizes. Our simulation 

study demonstrates that the divide-and-conquer method approximates the original problem very well while 

significantly reduces the computational cost. 

To formulate the “l-diversity” constraint (6) as a set of linear constraints, we introduce an 

additional binary decision variable 𝒖𝒖 that is of length 𝑛𝑛𝑛𝑛. Then constraint (6) can be represented as  

𝐶𝐶4𝒛𝒛 − 𝐈𝐈𝑛𝑛𝑛𝑛𝒖𝒖 + 𝟎𝟎𝒗𝒗 ≥ 𝟎𝟎;                                                                (A6) 

𝟎𝟎𝒛𝒛 + 𝐶𝐶5𝒖𝒖 − 𝑙𝑙𝐈𝐈𝑛𝑛𝒗𝒗 ≥ 𝟎𝟎;                                                                (A7) 

𝟎𝟎𝒛𝒛 + 𝐶𝐶5𝒖𝒖 − 𝑞𝑞𝐈𝐈𝑛𝑛𝒗𝒗 ≤ 𝟎𝟎;                                                               (A8) 

where 𝐶𝐶4 is an 𝑛𝑛𝑛𝑛 by 𝑛𝑛𝑠𝑠 matrix such that 𝐶𝐶4𝒛𝒛 = (𝒃𝒃1⋅𝑺𝑺𝑑𝑑𝑑𝑑𝑚𝑚, … ,𝒃𝒃𝑛𝑛⋅𝑺𝑺𝑑𝑑𝑑𝑑𝑚𝑚), and 𝐶𝐶5 = 𝐈𝐈𝑛𝑛 ⊗ 𝟏𝟏𝑛𝑛. 
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B. Simulation to Demonstrate Performance and Computational 

Efficiency of Heuristic 
We conduct several simulation studies to demonstrate that (1) our heuristic gains significant 

computational efficiency at a modest cost of optimality in terms of loss of information, (2) the scale of 

subproblems can be reasonably small for various sizes of panel data, and (3) different levels of distortion can 

be achieved using our weighted protection scheme. 

B.1. Investigating performance and computational cost 

The proposed heuristic can efficiently solve the optimization problem by using the divide-and-

conquer method. In this simulation, we demonstrate that computing time can be significantly reduced by 

splitting matrix A into multiple submatrices and solving the optimization problem for these submatrices. We 

further show that the substantial gain in computational efficiency comes at a modest loss of information 

measured by the same metrics as in Table 3.  

We simulate purchases of four brands by 300 panelists on multiple transactions, where the purchase 

quantities of the four brands are assumed to be the QID. Specifically, for each panelist, the number of 

records (transactions) is a random integer in [3, 15] with equal probability. For each record, the choices of the 

four brands follow a multinomial distribution with probabilities (0.1, 0.2, 0.3, 0.4). To account for multi-brand 

purchases, we set the size of the multinomial distribution to be a random integer in{1, 2, 3} with equal 

probability; that is, a panelist can purchase at most 3 different brands in a single transaction. The purchase 

quantity is generated from a Gamma distribution (rounded) with shape=1 and scale=2.  
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Figure A1. Computational time (in log seconds) for various privacy levels (k) and number of sub-matrices (q) 
split from the original matrix A. The boxplots are for 100 replicates when q=2,…,6.  
 

Figure A1 depicts the CPU time in natural log scale for k-anonymization across different k and q, 

which is the number of submatrices. For q>1, we repeat the k-anonymization 100 times due to randomness 

involved in the heuristic. The substantial reduction in CPU time as q increases can be clearly seen. For 

example, for k=5, solving the full optimization problem (q=1) would take about 𝑒𝑒6(≈ 400) seconds, while 

splitting into 6 sub-problems (q=6) and solving all of them (not in parallel computing) only takes 𝑒𝑒3(≈ 20) 

seconds. The computing time can be further reduced if parallel computing is applied. Figure A1 also shows 

that the computing time increases with the privacy level k. Similar results are observed based on a different 

random dataset. 

The next results shown in Table A1 demonstrate that the gain of computational efficiency comes at a 

modest cost of optimality in terms of information loss. In particular, we compare the information loss based 

on solving the full optimization problem (q=1) and that of solving multiple (q=2,…,6) subproblems (divide-

and-conqure). We report the same metrics as in Table 3 for 4-anonymization on four independently simulated 

samples based on the same setting as before. These include two measures for overall data deviation from the 

original true data (in panel A): the percentage of changed cells (PCC) and the mean squared distance (MSD), 
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and the mean absolute percentage deviation (MAPD) of three commonly reported marketing brand metrics 

(in panel B): market share (MS), share of category requirements (SCR) and brand switching probability (BSP). 

For q>1, we obtain the average and standard deviation across 100 replicates due to random split. We see an 

incremental loss of information as q increases for all measures except for BSP in a few cases. This shows the 

tradeoff between computational efficiency and the approximation error, which is expected in general. 

However, such incremental loss of information is modest compared to the reduced computing time as shown 

in Figure A1. Practitioners may carefully balance this tradeoff using context-specific metrics.  

Table A1: Information loss due to 4-anonymization. Compared are the same metrics as in Table 3 for solving 
the full optimization problem (q=1) and solving multiple q (=2,…,6) sub-problems. Panel A reports overall 
information loss including percentage of changed cells (PCC) and mean squared distance (MSD) between 
protected and true data. Panel B reports mean absolute percentage deviation (MAPD) of market share (MS), 
share of category requirements (SCR) and brand switching probability (BSP). Reported are average and 
standard deviation (in parentheses) over 100 replicates for q=2…6.  

  q=1 q=2 q=3 q=4 q=5 q=6 
Panel A. Overall information loss in transaction-level data 

Data #1 PCC 2.85 (-) 3.27 (0.07) 3.56 (0.08) 3.74 (0.11) 3.91 (0.1) 4.01 (0.11) 
MSD 0.27 (-) 0.36 (0.02) 0.42 (0.02) 0.48 (0.03) 0.52 (0.03) 0.55 (0.03) 

Data #2 PCC 3.02 (-) 3.45 (0.08) 3.71 (0.08) 3.91 (0.09) 4.09 (0.10) 4.18 (0.10) 
MSD 0.28 (-) 0.33 (0.01) 0.37 (0.01) 0.41 (0.01) 0.44 (0.01) 0.47 (0.02) 

Data #3 PCC 3.14 (-) 3.69 (0.07) 4.03 (0.09) 4.24 (0.10) 4.41 (0.10) 4.57 (0.11) 
MSD 0.29 (-) 0.38 (0.01) 0.44 (0.02) 0.48 (0.02) 0.53 (0.02) 0.56 (0.02) 

Data #4 PCC 2.85 (-) 3.27 (0.07) 3.56 (0.08) 3.74 (0.11) 3.91 (0.10) 4.01 (0.11) 
MSD 0.27 (-) 0.36 (0.02) 0.42 (0.02) 0.48 (0.03) 0.52 (0.03) 0.55 (0.03) 

Panel B. MAPD (%) in brand metrics 

Data #1 
MS 0.70 (-) 1.11 (0.38) 1.22 (0.41) 1.49 (0.52) 1.66 (0.59) 1.86 (0.58) 
SCR 0.31 (-) 0.55 (0.21) 0.66 (0.28) 0.83 (0.30) 0.94 (0.43) 1.09 (0.41) 
BSP 0.72 (-) 0.97 (0.31) 1.07 (0.29) 1.24 (0.31) 1.33 (0.38) 1.27 (0.36) 

Data #2 
MS 0.28 (-) 1.11 (0.39) 1.28 (0.49) 1.33 (0.42) 1.34 (0.50) 1.46 (0.53) 
SCR 0.45 (-) 0.60 (0.23) 0.64 (0.26) 0.74 (0.29) 0.74 (0.25) 0.75 (0.28) 
BSP 0.63 (-) 0.72 (0.23) 0.82 (0.26) 0.81 (0.23) 0.78 (0.27) 0.83 (0.29) 

Data #3 
MS 0.65 (-) 0.84 (0.32) 0.95 (0.34) 1.09 (0.41) 1.11 (0.43) 1.22 (0.44) 
SCR 0.42 (-) 0.55 (0.23) 0.63 (0.27) 0.62 (0.25) 0.67 (0.28) 0.78 (0.36) 
BSP 0.61 (-) 0.72 (0.24) 0.89 (0.29) 0.85 (0.32) 0.98 (0.34) 1.06 (0.31) 

Data #4 
MS 0.47 (-) 0.57 (0.27) 0.79 (0.34) 0.91 (0.36) 1.04 (0.44) 1.13 (0.49) 
SCR 0.32 (-) 0.53 (0.22) 0.63 (0.29) 0.62 (0.26) 0.74 (0.32) 0.78 (0.33) 
BSP 1.27 (-) 1.09 (0.24) 1.09 (0.22) 1.07 (0.28) 1.02 (0.29) 1.07 (0.33) 

 
B.2. Scale of subproblems for different sizes of panel data 

In this subsection, we assess the dimension of matrix A and its submatrices under different sizes of 

the original panel data. First, we generate panel data with different sizes (by varying the number of panelists 
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and number of brands), and transform it to matrix A. We investigate the size of matrix A and its submatrices 

by splitting row-wise. Recall that the number of rows of matrix A is the number of unique QID values in the 

data, and number of columns of A is the number of panelists. Thus, the dimension of matrix A and the total 

number of nonzero entries determines the scale of the original optimization problem, which can be large and 

infeasible for a large dataset. The divide-and-conquer method in our heuristic is the key to improving the 

computational efficiency. The simulation results in B.1 have shown the tradeoff between the number of 

submatrices and the optimality. Therefore, the goal of this simulation is to investigate the dimension of 

submatrices across different sizes of the original data.  

We use a similar data generating procedure as described in B.1 except for the following changes: (1) 

we vary the number of panelist in (100, 300, 500, 1000, 5000, 10000) and the number of brands (QID 

attributes) in (3, 4, 5, 6, 7, 8, 9) correspondingly; and (2) the brand shares are set to be equal, so the choices in 

each record (transaction) are simulated from a multinomial distribution with equal probabilities.  

Table A2 shows the number of observations in the simulated data (# obs.), number of rows of 

matrix A (row(A)), and average number of columns of the q submatrices split from matrix A. The reported 

values are averages over 100 replicates for different numbers of panelists (# ID). We can see that the average 

number of nonzero columns of submatrices decreases with increasing q. For data with up to 1000 panelists, 

the number of submatrices q does not increase beyond 10. The number of rows of submatrices is simply 

nrow(A)/q. Therefore, for sufficiently large M, we can always make the dimension of submatrices small 

enough to achieve certain computational efficiency. For instance, in Table A2 # ID = 300 corresponds to the 

panel data generated in previous simulation study (B.1). We can see that the average dimension of matrix A is 

437 rows and 300 columns, while its submatrices when q=6 have 73 rows (437/6) and 213 columns on 

average, and the computational cost for this size of data is small enough as shown in Figure A1. For moderate 

to large size of panel data, e.g., 10,000 panelists and 9 different brand purchases, the average number of 

records in the panel data is 81,257 (# obs.) and the average number of unique QIDs (nrow(A)) is 7031. When 

q=80, the average dimension of a single submatrix is about 88 rows (7031/80) and 939 columns, which is of a 

moderate size to handle unlike the original 7031*10000 dimensional matrix A. In practice, however, one may 
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carefully choose the number of splits q to balance the tradeoff between computational efficiency and 

optimality. In the next simulation, we demonstrate that a submatrix with this moderate size can be efficiently 

solved using a personal computer.1 

Table A2: Average sizes of panel data, matrix A and submatrices for data with different numbers of panelists. 

# ID # obs. row(A) 
Avg. # nonzero columns of submatrices for different q 

q=2 q=4 q=6 q=8 q=10 q=20 q=30 q=50 q=80 
100 789.8 172.6 97.0 83.4 70.3 59.7 51.8 - - - - 
300 2392.5 436.7 291.9 251.4 212.6 181.6 158.1 - - - - 
500 4021.2 747.5 487.0 422.4 357.4 306.5 266.3 - - - - 
1000 8097.8 1369.8 974.6 847.3 719.6 616.8 538.1 - - - - 
5000 40506.2 4038.8 4874.0 4239.1 3602.8 3094.6 2691.1 1614.8 1146.1 724.9 466.7 
10000 81257.2 7031.1 9752.9 8499.5 7226.3 6208.7 5410.1 3247.4 2308.2 1459.6 939.4 

 
To demonstrate, we directly simulate a submatrix of dimension 100*500 and 100*1000,2 and apply 

our k-MM method at k=7 to each setting, respectively. We find that the average CPU time for the two 

different sizes of submatrix are 7.14 (0.81) and 12.2 (0.58) seconds (shown in parentheses are standard 

deviations over 100 replicats). It indicates that for a panel data with 10000 panelists as simulated previously, 

our method takes approximately 16 minutes for 7-anonymization when q=80, without parallelizing.  

B.3. Weighted cost of distortion 

Following the same data generating procedure described in B.1, we simulate 100 samples and apply 

the weighted protection scheme described in Section 4.2 to show that different levels of distortion can be 

achieved for different attributes. Figure A2 shows the boxplot of the MAPD of sales of all four brands under 

weighted (right) and unweighted (left) protection schemes for different privacy levels k. The boxplot displays 

results for 100 random samples. This result is consistent with Figure 9, which shows the MAPD of sales for 

real household panel data. Again, the results demonstrate that the proposed data protection method allows 

the flexibility that user can specify different levels of distortion for different attributes. 

 
1 This simulation is performed on a Dell XPS 8930 with Intel Core i9-9900K CPU and 32 GB memory. 
2 The entries of each column (length=100) are generated from a multinomial distribution, where the vector of probabilities is 
c(1,…,1, 2,…,2, 3,…,3, 4,…,4, 5,…,5), where c is a scaling constant such that the sum of this vector is 1, and the size is 1 (with 
probability 0.67) or 2 (with probability 0.33) 
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Figure A2. Mean absolute percentage deviation of sales for four different brands under weighted and 
unweighted protection scheme over 100 samples. The weights are the true market shares (shown in 
parentheses in the legend).  

 

C. Brand Choice Model and Data Processing 
Brand Choice Model 

In this paper, we focus on brand choice modeling (McFadden, 1974; Guadagni and Little, 1983; 

Gupta et al., 1996; Allenby and Rossi, 1998) as an important marketing application to evaluate data utility 

after protection. The Hierarchical Bayesian random coefficient model (Allenby and Rossi, 1998) is a popular 

approach for estimating the brand choice model with customer heterogeneity. 

Let 𝒚𝒚𝑖𝑖𝑖𝑖
(𝑗𝑗) be an observed 𝐽𝐽 × 1 indicator vector where 𝑗𝑗th element is 1 and others are 0, indicating 

that customer 𝑖𝑖 chooses brand 𝑗𝑗 over other brands at time 𝑡𝑡. Under the standard random utility framework, 

the brand choice for customer 𝑖𝑖 at time 𝑡𝑡, denoted by the random vector 𝑌𝑌𝑖𝑖𝑖𝑖 , can be modeled as a function of 

latent utility of all alternatives (𝑈𝑈𝑖𝑖𝑖𝑖
(1), . . . ,𝑈𝑈𝑖𝑖𝑖𝑖

(𝐽𝐽)). Specifically,  

ℙ�𝑌𝑌𝑖𝑖𝑖𝑖 = 𝒚𝒚𝑖𝑖𝑖𝑖
(𝑗𝑗)� = 𝐺𝐺 �𝑈𝑈𝑖𝑖𝑖𝑖

(𝑗𝑗)� ;                                                                 (A6) 

𝑈𝑈𝑖𝑖𝑖𝑖
(𝑗𝑗) = 𝛼𝛼𝑖𝑖𝑗𝑗 + 𝜷𝜷𝑖𝑖𝑇𝑇𝒙𝒙𝑖𝑖𝑗𝑗𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖 ,    𝝐𝝐𝑖𝑖,𝑖𝑖 ∼

𝑖𝑖𝑖𝑖𝑑𝑑 𝑁𝑁(𝟎𝟎,Λ),                                       (A7) 

where the parameter 𝛼𝛼𝑖𝑖𝑗𝑗 in (A7) is customer 𝑖𝑖’s intrinsic brand preference for brand 𝑗𝑗, and 𝜷𝜷𝑖𝑖𝑇𝑇𝒙𝒙𝑖𝑖𝑗𝑗𝑖𝑖 is the 

systematic component, where the coefficient vector 𝜷𝜷𝑖𝑖 ∈ ℝ𝐾𝐾 reflects the effect of marketing mix variables 𝑋𝑋 

(e.g. price, promotions, display and feature) for customer 𝑖𝑖. Commonly used link function 𝐺𝐺−1(⋅) is 
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multinomial logit or probit model. Under the hierarchical Bayesian modeling framework, the parameter 

vector (𝛼𝛼𝑖𝑖1, . . . ,𝛼𝛼𝑖𝑖𝐽𝐽 ,𝜷𝜷𝑖𝑖) ∈ ℝ(𝐽𝐽+𝐾𝐾) is the random coefficient vector that is assumed to independently and 

identically follow a multivariate normal distribution. Denoting 𝜽𝜽𝑖𝑖 = (𝛼𝛼𝑖𝑖1, . . . ,𝛼𝛼𝑖𝑖𝐽𝐽 ,𝜷𝜷𝑖𝑖), equation (A7) can be 

expressed as the following hierarchical Bayesian random effect model:  

𝑈𝑈𝑖𝑖𝑖𝑖(𝑗𝑗)|𝜽𝜽𝑖𝑖 = 𝜽𝜽𝑖𝑖𝑇𝑇𝒙𝒙𝑖𝑖𝑗𝑗𝑖𝑖∗ + 𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖 ,    𝝐𝝐𝑖𝑖,𝑖𝑖 ∼
𝑖𝑖𝑖𝑖𝑑𝑑 𝑁𝑁(𝟎𝟎,Λ);                                           (A8) 

𝛉𝛉𝑖𝑖 ∼ N(𝛉𝛉�,𝑉𝑉𝛉𝛉),                                                                     (A9) 

where 𝒙𝒙𝑖𝑖𝑗𝑗𝑖𝑖∗  is (𝐽𝐽 + 𝐾𝐾) × 1 covariate vector with first 𝐽𝐽 elements being 0 except for 𝑗𝑗th being 1. Following 

Allenby and Rossi (1998), we assume conjugate priors for the mean vector 𝜽𝜽�, covariance matrix 𝑉𝑉𝛉𝛉, and Λ. 

That is 𝜽𝜽� ∼ N(𝜽𝜽��,𝑎𝑎𝑉𝑉𝛉𝛉), 𝑉𝑉𝛉𝛉 ∼ IW(𝑢𝑢0𝐼𝐼, 𝑣𝑣0), where 𝑣𝑣0 > 𝐾𝐾 + 𝐽𝐽, and Λ = diag(1,𝜆𝜆2, . . . , 𝜆𝜆𝐽𝐽−1) with �𝜆𝜆𝑗𝑗 ∼

IG(𝜈𝜈, 𝑠𝑠𝑗𝑗), where 𝜈𝜈 = 3 and 𝑠𝑠𝑗𝑗 = 1. Note that 𝜆𝜆1 is set to 1 for identifiability in the multinomial model.  

This model can be efficiently estimated through Markov Chain Monte Carlo methods with Gibbs 

sampling. We use the R package “bayesm” in our empirical analysis. 

Data Preparation 

Each marketing mix variable in the store data file is first aggregated over UPCs for each of the 10 

brands, to obtain a week-by-brand table. This table is merged into the panel purchasing data by week. The 

process of aggregation is to compute volume-weighted average prices across UPCs, and the mode across 

UPCs of each binary promotion indicator. Next, only for the brand purchased on each shopping trip, the 

marketing mix variable value in the panel data overwrites the value obtained from the store data. Estimation 

of the brand choice model with unobserved heterogeneity requires that each household should have multiple 

purchase records. Therefore, we include in our sample only households who have made 5 or more purchases 

in the data. We exclude 14.9% of trips on which multi-brand purchases occur. As a result, the sample for 

estimating the brand choice model has 3,995 shopping trips made by 407 households. It is important to 

clarify that application of these filters may result in slightly different sample sizes for each protected data. This 

is because the protection is applied to the original data and it alters the number of units purchased, in which 

case the alteration from nonzero to zero (or vice versa) would affect the filtering results. However, Table A7 
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in the appendix D shows that the differences are negligible. It is important to note that the data protection 

procedure is applied to the full sample, while brand choice modeling is based on this filtered subsample. 

D. Additional Results  
Table A3: Unicity for increasing numbers of top brands for 15 product categories. The QID is defined as the 
set of attributes: week and number of units purchased of each brand. 

Product category Unicity for top J brands  
J=3 J=4 J=5 J=6 J=7 J=8 J=9 J=10 

Carb beverage 0.348 0.402 0.461 0.490 0.539 0.587 0.621 0.640 
Coffee 0.184 0.264 0.293 0.315 0.347 0.362 0.371 0.387 
Cold cereal 0.187 0.204 0.219 0.252 0.311 0.344 0.369 0.406 
Frozen dinner 0.452 0.374 0.398 0.398 0.416 0.409 0.424 0.458 
Frozen pizza 0.271 0.301 0.327 0.346 0.350 0.369 0.382 0.390 
Hotdog 0.113 0.142 0.161 0.198 0.211 0.227 0.247 0.262 
Laundry detergent 0.161 0.168 0.181 0.200 0.205 0.224 0.238 0.247 
Mayo 0.120 0.123 0.126 0.132 0.136 0.137 0.140 0.144 
Milk 0.097 0.127 0.152 0.162 0.185 0.195 0.204 0.208 
Mustard/Ketchup 0.095 0.117 0.151 0.169 0.203 0.214 0.233 0.247 
Peanut butter 0.111 0.137 0.154 0.167 0.170 0.179 0.183 0.199 
Salty snack 0.140 0.183 0.235 0.276 0.320 0.355 0.381 0.414 
Spaghetti sauce 0.147 0.183 0.212 0.221 0.244 0.259 0.269 0.287 
Toilet tissue 0.078 0.091 0.103 0.117 0.137 0.148 0.159 0.167 
Yogurt 0.309 0.361 0.404 0.431 0.462 0.484 0.502 0.509 

 
Table A4: Sno-unicity for increasing numbers of top brands for 15 product categories. The QID is defined as 
the set of attributes: week and number of units purchased of each brand. 

Product category Sno-unicity for top J brands  
J=3 J=4 J=5 J=6 J=7 J=8 J=9 J=10 

Carb beverage 0.631 0.725 0.805 0.850 0.904 0.928 0.939 0.942 
Coffee 0.278 0.417 0.443 0.470 0.508 0.535 0.558 0.586 
Cold cereal 0.331 0.378 0.375 0.431 0.530 0.586 0.629 0.664 
Frozen dinner 0.596 0.509 0.563 0.557 0.604 0.590 0.609 0.637 
Frozen pizza 0.416 0.470 0.489 0.514 0.514 0.533 0.563 0.580 
Hotdog 0.159 0.208 0.243 0.278 0.308 0.326 0.348 0.361 
Laundry detergent 0.217 0.242 0.261 0.285 0.291 0.311 0.325 0.339 
Mayo 0.153 0.157 0.159 0.163 0.167 0.168 0.171 0.175 
Milk 0.187 0.224 0.280 0.295 0.326 0.334 0.337 0.345 
Mustard/Ketchup 0.104 0.136 0.177 0.207 0.255 0.275 0.302 0.324 
Peanut butter 0.153 0.204 0.238 0.265 0.268 0.282 0.286 0.297 
Salty snack 0.248 0.337 0.425 0.494 0.585 0.681 0.724 0.775 
Spaghetti sauce 0.208 0.265 0.312 0.335 0.369 0.380 0.392 0.411 
Toilet tissue 0.131 0.200 0.208 0.218 0.256 0.275 0.301 0.305 
Yogurt 0.606 0.721 0.777 0.810 0.835 0.848 0.851 0.856 

 
Table A5: Cumulative market shares of top J brands for 15 product categories. 

Product category Cumulative market share of top J brands 
J=1 J=2 J=3 J=4 J=5 J=6 J=7 J=8 J=9 J=10 
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Carb beverage 0.157 0.251 0.311 0.370 0.418 0.466 0.514 0.555 0.583 0.605 
Coffee 0.287 0.428 0.526 0.606 0.683 0.720 0.748 0.774 0.799 0.820 
Cold cereal 0.060 0.118 0.172 0.208 0.243 0.275 0.306 0.335 0.365 0.392 
Frozen dinner 0.121 0.239 0.345 0.435 0.478 0.516 0.553 0.587 0.621 0.648 
Frozen pizza 0.196 0.385 0.506 0.627 0.701 0.757 0.801 0.836 0.868 0.896 
Hotdog 0.378 0.515 0.645 0.755 0.857 0.879 0.897 0.911 0.925 0.938 
Laundry detergent 0.314 0.626 0.754 0.827 0.884 0.940 0.952 0.964 0.971 0.975 
Mayo 0.760 0.943 0.980 0.985 0.988 0.991 0.993 0.995 0.997 0.998 
Milk 0.382 0.744 0.831 0.908 0.937 0.956 0.961 0.967 0.972 0.976 
Mustard/Ketchup 0.410 0.783 0.830 0.863 0.893 0.924 0.943 0.958 0.970 0.979 
Peanut butter 0.546 0.703 0.857 0.902 0.938 0.949 0.958 0.966 0.974 0.981 
Salty snack 0.130 0.230 0.306 0.371 0.436 0.488 0.539 0.581 0.623 0.661 
Spaghetti sauce 0.383 0.505 0.626 0.725 0.818 0.905 0.932 0.943 0.953 0.961 
Toilet tissue 0.302 0.477 0.623 0.734 0.816 0.869 0.904 0.934 0.963 0.983 
Yogurt 0.281 0.514 0.623 0.731 0.769 0.806 0.833 0.855 0.870 0.883 

 
Table A6: Coefficient estimates of a logistic regression that predicts individual privacy risk (IR) coded as high 
(1) versus low (0) based on median split using household-specific purchase behavior characteristics. 
 Estimate Standard error z value p-value 
Intercept -1.366 0.187 -7.304 0.000 
Avg. # of units bought per trip 0.234 0.070 3.363 0.001 
# Brands ever bought 0.114 0.049 2.330 0.020 
Total dollar spend across trips 0.010 0.002 4.461 0.000 

 
Table A7: Average sample size and number of households over 100 replicates of protected data (filtered for 
brand choice model). In parentheses are standard deviations based on the 100 replicates. 

 Unprotected k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 
Average sample 
size 

3995.0 3993.5 4012.1 4014.8 4031.4 4065.7 4084.1 
 (3.9) (4.7) (6.1) (7.6) (11.1) (11.3) 

Average number 
of panelists 

407.0 406.8 408.1 408.4 408.3 409.6 410.2 
 (0.5) (0.7) (0.8) (1.1) (1.4) (1.3) 

 
Table A8: Brand-specific constant estimates. 

 Unprotected 
Data 

k-anonymized Data 
Brand-specific constants: k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 
Cheetos -0.778 -0.790 -0.753 -0.723 -0.800 -0.809 -0.852 
Doritos -2.033 -2.177 -2.128 -2.111 -2.156 -2.139 -2.141 
Lays -0.569 -0.866 -0.923 -0.877 -0.902 -0.957 -1.055 
Lays Natural -2.138 -2.252 -2.253 -2.248 -2.271 -2.279 -2.328 
Old Dutch -0.095 -0.064 -0.023 -0.036 -0.066 -0.061 -0.124 
Old Dutch Ripples -3.424 -3.449 -3.358 -3.336 -3.421 -3.391 -3.424 
Sunchips -3.320 -3.396 -3.344 -3.331 -3.366 -3.311 -3.344 
Tostitos Natural -3.985 -4.145 -4.108 -4.097 -4.035 -4.048 -4.047 
Wavy Lays -2.275 -2.298 -2.263 -2.300 -2.326 -2.329 -2.388 

 
Table A9: Standard deviations of posterior distributions for coefficient estimates. 

  Unprotected k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 
Cheetos 0.957 1.013 1.023 0.980 0.942 0.959 0.942 
Doritos 1.204 1.223 1.196 1.178 1.150 1.133 1.108 
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Lays 1.181 1.282 1.289 1.248 1.234 1.231 1.184 
Lays Natural 1.358 1.426 1.409 1.402 1.366 1.360 1.325 
Old Dutch 0.953 0.893 0.905 0.902 0.900 0.884 0.874 
Old Dutch Ripples 0.957 1.070 1.081 1.054 1.059 1.024 1.029 
Sunchips 1.410 1.583 1.605 1.587 1.561 1.541 1.512 
Tostitos Natural 1.500 1.524 1.525 1.521 1.491 1.496 1.469 
Wavy Lays 1.223 1.112 1.081 1.054 1.073 1.045 1.023 
LogPrice 1.500 1.603 1.624 1.612 1.574 1.552 1.529 
Promotion 0.636 0.700 0.712 0.718 0.706 0.706 0.708 
Display 0.826 0.822 0.829 0.834 0.838 0.842 0.823 
Feature 0.701 0.770 0.801 0.749 0.744 0.743 0.725 

 
Table A10: Sample size and number of households due to k-anonymization with record deletion  

 Unprotected k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 
Full sample without filtering  
# obs.  6117 5143 4642 4209 3779 3430 3130 
# Panelists 1009 981 965 945 908 891 862 
Filtered sample for brand choice modeling 
# obs.  3995 3630 3231 2785 2407 2082 1759 
# Panelists 407 391 372 333 296 266 229 

 
 
E. Implementation of Benchmarking Approaches 
Implementation of clustering-based aggregation: 

Input: Household panel data at transaction-level  
Result: k-anonymized household panel data at transaction-level 
For week 𝒕𝒕, do 

1. Find 𝑛𝑛𝑖𝑖 approximately equal-sized clusters based on QID variables (without week). To 

achieve k-anonymity, 𝑛𝑛𝑖𝑖 ≤
𝑛𝑛𝑡𝑡
𝑘𝑘

, where 𝑛𝑛𝑖𝑖 is the number of unique panelists in week 𝑡𝑡. 

2. For each cluster, aggregate the QID variables with summation and market-mix variables 
with average, while keep the data at transaction-level, e.g., all 𝑛𝑛𝑖𝑖 have the same transactions. 

 

Definition of 𝝐𝝐-differential privacy (Dwork 2006): A randomized function K gives 𝜖𝜖-differential privacy if 

for all data sets D1 and D2 differing on at most one element and all measurable subsets 𝑆𝑆 ⊆ 𝑅𝑅𝑎𝑎𝑛𝑛𝑅𝑅𝑒𝑒(𝐾𝐾), 

Pr[𝐾𝐾(𝐷𝐷1) ∈ 𝑆𝑆]    ≤  𝑒𝑒𝑒𝑒𝑛𝑛(𝜀𝜀) × Pr[K(𝐷𝐷2) ∈ S]. 

Implementation of 𝝐𝝐-differential privacy-based random noise addition:  

Input: Household panel data at consumer-week-brand level  
Result: Protected household panel data at consumer-week-brand level 

1. Let (𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝐽𝐽) be the total counts for the 𝐽𝐽 brands. Denote 𝑛𝑛 ≔ ∑ 𝑛𝑛𝑗𝑗
𝐽𝐽
1 .  
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2. Set the hyperparameter of Dirichlet prior 𝛼𝛼 = �𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐽𝐽�, and let 𝛼𝛼1 = 𝛼𝛼2 = ⋯ = 𝑛𝑛
exp(𝜖𝜖)−1

  

where 𝜖𝜖 ≥ 0 is the level of protection. 

3. For each brand 𝑗𝑗, sample one vector of posterior probabilities (consisting of 𝐽𝐽 elements) from the 

posterior Dirichlet distribution with parameter vector �𝑛𝑛1 + 𝛼𝛼1, … ,𝑛𝑛𝐽𝐽 + 𝛼𝛼𝐽𝐽�, which results from 

the combination of the multinomial likelihood and Dirichlet prior.  

4. For each observation 𝑖𝑖, draw a synthetic brand choice from a multinomial distribution with the 

posterior probabilities from 3.  

 
 
 
F. Descriptive Statistics of Physician Prescribing Data 

Table A11: Summary statistics of physician prescription data at physician-month level. 
  Prescriptions Detailing 
 % share Total Number Mean Variance Mean frequency 
Lipitor 34.33 5148 0.575 1.148 0.833 
Zocor 21.04 3155 0.352 0.714 1.097 
Crestor 17.67 2650 0.296 0.783 0.615 
Non Drug Treatment 26.96 4042 0.451 1.117 - 

 

Table A12: Mean values of parameter estimates from Hierarchical Bayesian random effects logit model for 
physician prescribing data. In parentheses are posterior standard deviations. 

  Unprotected k-Anonymized Data 
k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 

Lipitor 0.381 
(0.308) 

0.403 
(0.303) 

0.408 
(0.303) 

0.407 
(0.303) 

0.414 
(0.302) 

0.419 
(0.302) 

0.421 
(0.302) 

Zocor -0.238 
(0.049) 

-0.222 
(0.035) 

-0.226 
(0.033) 

-0.230 
(0.032) 

-0.225 
(0.033) 

-0.230 
(0.035) 

-0.231 
(0.034) 

Crestor -0.435 
(0.056) 

-0.433 
(0.038) 

-0.444 
(0.037) 

-0.458 
(0.037) 

-0.460 
(0.038) 

-0.465 
(0.037) 

-0.470 
(0.037) 

Detailing (market mix) 0.308 
(0.015) 

0.303 
(0.013) 

0.303 
(0.013) 

0.303 
(0.013) 

0.302 
(0.013) 

0.302 
(0.013) 

0.302 
(0.013) 

MAPD (%) - 5.603 6.008 6.360 7.497 7.653 7.924 
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