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Corporate Probability of Default: A Single-Index

Hazard Model Approach

Abstract

Corporate probability of default (PD) prediction is vitally important for risk man-

agement and asset pricing. In search of accurate PD prediction, we propose a flexible

yet easy-to-interpret default-prediction single-index hazard model (DSI). By applying it

to a comprehensive U.S. corporate bankruptcy database we constructed, we discover an

interesting V-shaped relationship, indicating a violation of the common linear hazard

specification. Most importantly, the single-index hazard model passes the Hosmer-

Lemeshow goodness-of-fit calibration test while neither does a state-of-the-art linear

hazard model in finance nor a parametric class of Box-Cox transformation survival

models. In an economic value analysis, we find that this may translate to as much as

three times of profit compared to the linear hazard model. In model estimation, we

adopt a penalized-spline approximation for the unknown function and propose an effi-

cient algorithm. With a diverging number of spline knots, we establish consistency and

asymptotic theories for the penalized-spline likelihood estimators. Furthermore, we re-

examine the distress risk anomaly, that is, higher financially distressed stocks deliver

anomalously lower excess returns. Based on the PDs from the proposed single-index

hazard model, we find that the distress risk anomaly has weakened or even disappeared

during the extended period.

Keywords: Asset Pricing; Bankruptcy Prediction; Nonparametric; Penalized Splines;

Survival.

1



1 Introduction

The corporate probability of default (PD) plays a crucial role in risk management and asset

pricing (Altman, 1968; Shumway, 2001; Vassalou and Xing, 2004; Campbell et al., 2008;

Ding et al., 2012; Tian et al., 2015). It is often a key metric for credit rating agencies, such

as Moody’s and Standard & Poor’s, to deliver risk assessment for investors. The PDs are

also tied to credit spread and loan rate calculations for corporate bonds. In response to 2008

financial crisis, the Basel Committee on Banking Supervision developed an international reg-

ulatory framework for banks, Basel III, under which the PD is an essential input to calculate

banking’s capital and liquidity. Indeed, the PD is a core risk parameter to conduct stress

testing and comprehensive capital analysis and review (CCAR), overseen by the Federal Re-

serve regularly. A dramatic increase in corporate bankruptcies has already been witnessed

since the beginning of the global COVID-19 pandemic in 2020. In the United States alone,

there are more than 340 companies filed for bankruptcy including big names such as Hertz

and J.C. Penney, citing financial distresses due to the COVID-19 (Scigliuzzo et al., 2020).

The magnitude of bankruptcies, in terms of assets, has far surpassed the year of 2008, sug-

gesting an unprecedented financial distress (Shen, 2020). In the face of such large levels of

financial stress, closely-monitored stress testing and CCAR attain a vital importance that

goes beyond the needs to meet regulatory requirements. Undoubtedly, an accurate predic-

tion of the PD is critically important. In search of accurate PD prediction, an accurate,

flexible, yet easily-interpretable statistical model is warranted.

In this paper, we build a comprehensive bankruptcy database of U.S. publicly traded firms

and develop a flexible default-prediction single-index hazard model (DSI) for corporate PD

prediction. One of the most important findings is shown in Figure 1, which depicts the pre-

dicted PDs from the proposed DSI model, benchmarking with a state-of-the-art bankruptcy

prediction model in finance (diagonal line), termed as CHS (Campbell et al., 2008),1 or equiv-

1CHS is short for Campbell, Hilscher and Szilagyi who are the authors of Campbell et al. (2008). They
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alently the Cox discrete-time model (Cox, 1972). Another benchmark model is an “optimal”

parametric discrete transformation survival model (DTM) that adopts a class of inverse of

Box-Cox and logarithm transformations (Ding et al., 2012).

We observe from Figure 1 that the predicted one-year-ahead PDs2 from the three models

virtually overlay each other in the area to the left of the shaded window, which corresponds

to the observations whose PDs fall below the 85 percentile based on CHS model. As the

percentiles get larger, the three models deliver noticeably different PDs. In the shaded win-

dow, which corresponds to 85 to 99 percentiles in the PDs predicted by CHS, the predicted

PDs from our proposed DSI model are the largest, followed by those from the DTM and

then from CHS. To the right of the shaded window is the most interesting top one percentile

of predicted PDs, where the order is completely reversed and the discrepancy becomes even

more substantial. These interesting findings may suggest that for a majority of small pre-

dicted PDs at a given time point, the cash reserves based on the predicted PDs from CHS

are similar to those from DSI and DTM. But for the highest PD estimates from the top

one percentile, the cash reserves from the CHS model would potentially be calculated overly

conservatively compared to those from the other two models.

For corporate bankruptcy prediction, a desirable model is usually evaluated in two dimen-

sions: discrimination and calibration performance. While discrimination assesses models’

ability to discriminate two dichotomous events, calibration evaluates the agreement between

the predicted probabilities and the actual proportions of the event occurrence. Given the

crucial role of PD estimates in capital requirement calculation under BASEL III, a model

with good calibration performance is essential. In this work, we adopt Hosmer-Lemeshow

(HL) goodness-of-fit test (Hosmer Jr et al., 2013) to assess models’ calibration power. To

adopted the reduced form of Shumway’s linear hazard model (Shumway, 2001), or equivalently the Cox
discrete-time model, and proposed market-based firm-specific variables as bankruptcy predictors.

2The plotted one-year-ahead PDs are the average of bins that are taken based on percentiles of the
predicted PDs from the benchmark CHS model.
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Figure 1: Predicted PDs from a state-of-the-art bankruptcy prediction model in finance,
CHS of Campbell et al. (2008) (diagonal line); an optimal discrete transformation survival
model (DTM) of Ding et al. (2012); and the proposed default-prediction single-index hazard
model (DSI) for corporate bankruptcy prediction.

the best of our knowledge, from our limited empirical analysis, we find that our proposed

default-prediction single-index hazard model is the only model in the literature that passes

the HL test for both in-sample and out-of-sample predictions across multiple time periods

regardless of whether the years of 2008 financial crisis are included or not.3 Our empirical

results also demonstrate a superior discriminatory power of the proposed DSI model.

Additionally, we assess the economic value of different PD prediction models through

a business lending practice, where different lenders use different PD prediction models for

credit scoring and calculate credit spread for each borrower. Companies with the highest

default risk are rejected. For the remaining companies, lenders offer competitive price based

3Hosmer-Lemeshow calibration test has been rarely conducted in the corporate bankruptcy literature. It
mostly fails based on our limited replication of existing works. To the best of knowledge, Ding et al. (2012)
may be the only work documented in the previous literature reporting a satisfactory calibration performance
using Hosmer-Lemeshow goodness-of-fit test. Although the “optimal” discrete transformation survival model
(DTM) passed the Hosmer-Lemeshow test according to Ding et al. (2012) for a sample period 1980-2006,
for the extended sample period 1980-2016 including 2008 financial crisis, we find that DTM with c = 10
remains optimal among a class of Box-Cox and logarithm transformation survival models but no longer
passes Hosmer-Lemeshow calibration test.
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on their PD prediction model, and borrowers choose the lender with the best offer. Under

a fixed loan market, profit of each lender can be calculated given prespecified values of loss

given default (LGD) and credit spread of the highest quality loan, hence the economic value

of different PD prediction models. Our empirical results show that the lender who adopts the

proposed DSI consistently generates the highest profit across out-of-sample periods, where

the profit may be as much as three times comparing to the lender using CHS model.

The discrepancy observed from Figure 1 may be partly due to the potential violation

of the linear assumption in the widely-regarded state-of-the-art CHS or Shumway’s linear

hazard model in finance. Nielsen et al. (1998) noted that the covariate effect is rarely specified

precisely by a parametric model in many applications. In fact, based on the annual data

of 17,862 publicly traded firms in the United States from 1980-2016, our empirical analysis

finds strong evidence suggesting that the linear specification may be severely violated. More

specifically, a V-shaped functional relationship (see Figure 2 and more details in empirical

results) is unveiled by applying our proposed DSI model that has the following form,

log

(
h(tj|xi,tj−1

)

1− h(tj|xi,tj−1
)

)
= αj + η(β

T

xi,tj−1
), (1)

where αj is the baseline hazard at time point tj and η(·) is a flexible univariate function. With

a penalized spline estimation, this flexible function turns out to be the aforementioned V

shape for the corporate bankruptcy database we construct. The linear projection β
T
xi,tj−1

is

the so-called single index, which maps xi,tj−1
, company i’s specific characteristics in previous

year tj−1, to a univariate index. The hazard function, h(tj|xi,tj−1
) is interpreted as the

probability of default of company i in year tj given its financial characteristics observed in

the previous year, i.e., Pr(T = tj|T ≥ tj,X = xi,tj−1
). If η(·) is specified as a linear functional

form, model (1) reduces to CHS model, or more generally, Cox discrete-time hazard model.

One of the most appealing features of model (1) is that the flexible univariate function η(·)
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can capture potential nonlinear relationship, while the single-index coefficients β preserves

some model interpretability. A nice by-product is that the single index may be itself of

interest. In the bankruptcy application, it may yield an interesting “financial default index”

for practitioners. To estimate model (1), we adopt a penalized-spline approximation for

its computational stability (Yu and Ruppert (2002); Ruppert et al. (2003); and references

therein). Penalized splines can be viewed as a generalization of smoothing splines, and the

penalty function helps to prevent over-fitting. Based on a recent theoretical development by

Huang and Su (2021), we establish a stochastic bound for the estimated function η̂ together

with the parametric components with a diverging number of knots. Asymptotic normality

is shown for the single-index coefficients with the optimal
√
n order. To the best of our

knowledge, this is the first work that establishes the asymptotic results for penalized-spline

likelihood estimators with a diverging number of knots under the semiparametric single-index

hazard model framework.

The proposed default-prediction single-index hazard model for corporate PD prediction

can be viewed as a discrete counterpart of the well studied continuous single-index hazard

models in survival analysis. To mention a few, Huang and Liu (2006) developed the single-

index proportional hazards model using polynomial splines at pre-specified fixed knots. Lu

et al. (2006) studied the partially-linear single-index proportional hazard model using local

linear fit adopting an algorithm similar to Carroll et al. (1997). Wang (2004) allowed some

covariates to be time-dependent with local partial likelihood estimation along with some

missing data imputation.

However, models studied in aforementioned works and other continuous survival liter-

ature cannot be directly applied to model corporate default probability. This is mainly

because the use of calendar time in our study, while a common time origin is applied to all

individuals under the framework of continuous survival analysis. In corporate default pre-

diction problem, it is necessary to use actual calendar time because companies with the same
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financial characteristics still have different probability of default at different calendar time

due to varying macroeconomic conditions (Ding et al., 2012). Therefore, companies entering

the database at different time (depending on their initial public offering (IPO) schedule)

should not share the common starting point. With the calendar time, the discrete-time

hazards model enjoys the “memoryless” feature that the conditional PD only depends on

the latest observation, rather than the entire trajectory of covariate vectors in continuous

survival models. In fact, the likelihood function of continuous survival models would be ill-

defined for corporate bankruptcy studies as the cumulative conditional hazard integrates the

entire trajectory of the time-varying covariates x(t), many of which are clearly not available

for the bankruptcy data.

We summarize our contributions as following. First, our work contributes to the literature

by unveiling an interesting V-shaped functional relationship (see Figure 2). Such a non-

monotone V shape contradicts to the common linearity assumption in the widely-used CHS

model or Shumway’s model. We propose a default-prediction single-index hazard model with

a flexible function η(·) along with a nice by-product of “financial default index” and apply

it to a comprehensive corporate bankruptcy database we construct.

Second, we empirically show that the proposed DSI model achieves superior prediction

performance in both calibration and discriminatory power, compared to benchmark models.

To the best of our knowledge, for the U.S. publicly traded companies the proposed DSI

model is the only model that passes the Hosmer-Lemeshow goodness-of-fit test (Hosmer Jr

et al., 2013) for both in-sample and out-of-sample prediction with various prediction periods,

including 2008 financial crises. This suggests that the proposed model is able to recover the

PDs more accurately, which may possibly lead to important implications in economical cap-

ital reserve calculation in risk management. In addition to the calibration test, the proposed

default-prediction single-index hazard model also yields superior prediction accuracy with

respect to discrimination. We further assess the economic value of different PD prediction
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model through a lending practice under a fixed loan market. The lender who adopts the

proposed DSI model for credit scoring consistently generates the highest profit throughout

the entire out-of-sample prediction period. The highest economic value generated by DSI

model again provides evidence of its superior performance in PD prediction.

Third, we revisit a vital asset pricing implication by applying our proposed default-

prediction single-index hazard model to an extended sample period including 2008 financial

crisis. The probability of default has also been directly linked to the asset pricing literature.

Fama and French (1996) conjecture that the investors demand a positive premium to bear

the distress risk. Instead, we find that the return premium associated with higher distress

risk is negative. Specifically, the firms with higher distress risk earn lower excess return

after controlling the common three factors of Fama and French (1996) or five-factors of

Fama and French (2015) for asset pricing. This finding is inconsistent with the original

conjecture by Fama and French (1996) but consistent with Campbell et al. (2008), Ding

et al. (2012), and Gao et al. (2018). However, unlike documented in these studies, our study

shows that the negative distress return anomaly, that is, higher financially distressed stocks

deliver anomalously significant lower excess returns, has weakened and even disappeared in

this extended sample period including 2008 financial crisis.

Last but not least, our work contributes to the statistical and econometric literature

by establishing the asymptotic results for the penalized-spline likelihood estimators of the

semiparametric single-index hazard models. The rest of this paper is organized as following:

Section 2 describes the corporate bankruptcy database we have constructed and used for

our empirical study. Section 3 introduces more details of the default-prediction single-index

hazard model along with an estimation algorithm and large sample property. The empirical

results are elaborated in Section 4, followed by a simulation study mimicking the real data

in Section 5. An asset pricing implication is investigated in Section 6. We conclude the

paper in Section 7. Online supplementary materials include additional tables and empirical

8



results, technical details, and proofs of theorems.

2 Data

In this paper, we construct a bankruptcy database consisting of all the U.S. publicly traded

firms listed on the New York Stock Exchange, American Stock Exchange, and NASDAQ from

1980 to 2016.4 The bankruptcy indicator is coded as “1” for the year that a company filed for

bankruptcy protection under either Chapter 7 (liquidation) or Chapter 11 (reorganization),

and “0” if the company is healthy, deleted, or delisted due to other reasons such as merger

and acquisition. The firm-specific covariates include both accounting and market-based

financial data that are collected from the Standard & Poor’s COMPUSTAT database and

the Center for Research in Security Prices (CRSP) database maintained by the Wharton

Research Data Services (WRDS). In particular, we merge a company’s quarterly updated

accounting information from the COMPUSTAT database with its monthly trading data

from the CRSP database. We carefully align the company’s fiscal year to the calendar

year and also lag all the annual accounting information by four months to ensure that the

accounting information is available to the market at the time of prediction (Shumway, 2001;

Chava and Jarrow, 2004). As a result, our constructed database consists of 189,037 firm-year

observations and 1,589 bankruptcy events during the sample period. A detailed frequency

table is shown in Table S1 of supplementary materials.

For the firm-specific covariates, we follow the formation of Campbell et al. (2008) and

use the market-valued total asset (MTA) rather than the book value to construct eight

exploratory variables, LTMTA, NIMTA, CASHMTA, MBE, RSIZE, EXRET, SIGMA and

PRICE. In specific, LTMTA is defined as total liability over market-valued total assets.

4Due to substantial delays of bankruptcy disputes as well as some delays in default status updates in
COMPUSTAT database, following the literature, we end the sampling period of this study in the year 2016
to avoid inaccurate records.
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NIMTA is the ratio of net income to market valued total assets. CASHMTA is constructed

by dividing cash and short-term assets by the market value of total assets. We obtain

RSIZE as the logarithm of firm’s relative size to the S&P 500 index value and EXRET as

the annual log excess return against the S&P 500 index return. SIGMA is the volatility

of firm stock returns in the past 3 months. Following Campbell et al. (2008), we take the

log of stock price as the PRICE variable and also adopt the 10% of the difference between

market and book equity to the book value of total assets to construct the market-to-book

ratio, MBE. In addition, we also winsorize all predictors at the 1st and 99th percentile in

order to reduce the affects by extremely values. Table 1 provides the detailed summary

statistics. One observation from Table 1 is that the bankruptcy group has quite different

financial characteristics from the non-bankruptcy group. The former tends to have higher

debt and liabilities relative to their assets, smaller size in terms of their asset values and

market capitalization, weaker profitability, and lower realized stock returns than that of the

latter. It is also clear that bankruptcy firms are usually more volatile. The average market

return volatility for the bankruptcy group is 1.170, while the volatility is only 0.607 for the

non-bankruptcy group. The bankruptcy group also has a lower average trading log-price of

0.467, comparing to 2.268 for the non-bankruptcy group.

Table 1: Summary statistics for bankruptcy predictors.

Bankruptcy firms Non-bankruptcy firms
(No. Firm-year = 1,589) (No. Firm-year = 187,448)

Variable Mean Std. Min Med Max Mean Std. Min Med Max
LTMTA 0.638 0.296 0.730 0.014 0.970 0.437 0.283 0.404 0.014 0.970
NIMTA -0.221 0.248 -0.149 -0.771 0.159 -0.020 0.135 0.016 -0.771 0.159
CASHMTA 0.109 0.180 0.037 0.000 0.747 0.102 0.133 0.053 0.000 0.747
MBE 5.964 12.359 1.582 0.225 59.495 2.882 6.574 1.620 0.225 59.495
RSIZE -12.539 1.580 -12.670 -14.839 -5.308 -10.508 2.078 -10.621 -14.839 -5.308
EXRET -0.738 0.765 -0.654 -1.943 1.178 -0.123 0.518 -0.072 -1.943 1.178
SIGMA 1.170 0.650 1.047 0.120 2.419 0.607 0.437 0.478 0.120 2.419
PRICE 0.467 1.323 0.454 -1.520 4.437 2.268 1.309 2.516 -1.520 4.676
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3 Semiparametric Single-Index Hazard Model

3.1 Default-Prediction Single-index Hazard Model

Let n be the total number of firms and xi,tj be the d-dimensional time-dependent covariate

vector denoting company i’s specific financial characteristics observed at time t, where t =

t1, ..., tj, ..., tJ are the J fixed discrete observation time in the whole sample period. For our

annual data, these are end of year observations. Let Ai denote the starting time and Di

denote the end time that company i, i = 1, 2, ..., n, is first and last observed in the database

respectively during the sample period. Denote δi the censoring indicator, where δi = 1 if the

ith company files bankruptcy at t = Di during the sample period; and δi = 0 otherwise.

A company may enter the database at different time depending on their initial public

offering (IPO) schedule. A company may also exit the database at different time due to its

bankruptcy status as well as other delisting reasons. In particular, for healthy companies

whose IPO dates are prior to the sample period, their starting date Ai = t1 will be the

same as our starting year 1980 in the sample period. For companies with IPO dates later

than 1981, then their starting date Ai is their first public trading year. For example, the

initial public offering year of Amazon is 1997 at a price of $18 per share. The starting date

for “Amazon” is the year of 1997, where Ai > t1. This kind of different starting time in

bankruptcy prediction is very different from the traditional survival analysis. On the other

hand, the end time Di is subject to right censoring at the end of the sample period. If a

company files for bankruptcy after the end of sampling period, then Di = tJ . A healthy

company may also exit the database through other delisting reasons such as merger and

acquisition. For example, Bank One corporation merged with JPMorgan Chase & Co. in

2004. Here for Bank One, the end year Di = 2004 but the censoring indicator δi = 0. A

healthy company such as Bank One can exit from the database earlier than the end of sample

period, through, e.g., merger or acquisition, where Di < tJ but δi = 0.
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Let T be the random variable of the calendar year when bankruptcy is filed. As companies

do not share the same starting point, T is different from the survival time in the traditional

survival analysis. Let

pi,tj = Pr(T = tj|T ≥ tj,X = xi,tj−1
)

or simply pi,tj = h(tj|xi,tj−1
) be the conditional probability that company i files for bankruptcy

at time tj given it has survived past time tj−1. Our single-index hazard model (1) for cor-

porate PD prediction can be rewritten as

pi,tj =
1

1 + exp{−αj − η(β
T
xi,tj−1

)}
. (2)

For model identifiability, we follow Yu and Ruppert (2002) to impose the constraints that

the single-index parameter ∥β∥2 = 1 and the first element β1 > 0.

The log-likelihood function of model (2) takes form

ln(η,α,β) =
n∑

i=1

∑
Ai<tj≤Di

[
δi,jlogpi,tj + (1− δi,j)log(1− pi,tj)

]
, (3)

where δi,j = δiI{Di = tj}. The mathematical derivation of (3) can be found in supplementary

materials (Section B). The memoryless property of model (1) or (2) can also be seen from such

mathematical derivation. One of the keys in estimating model (2) is to obtain a consistent

estimate of the flexible function η(·). In what follows, we discuss penalized spline estimation

in detail and establish its asymptotic properties.

3.2 Penalized Spline Estimation

Penalized splines or P-splines can be considered as a generalization of smoothing splines

allowing a flexible choice of knots and penalty (see Ruppert et al. (2003) for a review). Yu and

Ruppert (2002) showed that P-splines approach to single-index models is advantageous over
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other approaches such as local methods (Carroll et al., 1997). Unlike careful knot-placement

in regression splines, an appealing feature of P-spines estimation is that the smoothness is

tuned by a single penalty parameter λ as in smoothing splines (e.g. Huang and Liu (2006)).

We illustrate P-splines using the truncated power basis for simplicity. Other bases

such as B-splines can be easily adopted. The truncated power basis is defined as B(u) =

(u, u2, . . . , uq, (u − v1)
q
+, . . . , (u − vK)

q
+), where q is the polynomial degree, and v1, . . . , vK

are K interior knots. The truncation function (u − vk)
q
+ equals (u − vk)

q if u ≥ vk, and

0 otherwise. Popular ways to place spline knots are equally-spaced or equally at sample

quantiles. Any function η(u) with q − 1 continuous derivatives can be approximated by

γ1u+ γ2u
2 + . . .+ γqu

q + γq+1(u− v1)
q
+ + . . .+ γq+k(u− vK)

q
+ = γ

T

B(u),

where γ = (γ1, . . . , γq+K) is the q + K-dimensional spline coefficient column vector. Note

that the intercept term 1 in the spline basis B(u) as well as the corresponding constant spline

coefficient term γ0 are omitted due to the baseline constant α.

Assume that η(u) is defined on the interval [a, b], then the penalized-spline log-likelihood

can be written as

Qn,λ(η,α,β) =
1

n
ln(η,α,β)− λ

∫ b

a

[η(m)(u)]2du, (4)

where λ
∫ b

a
[η(m)(u)]2du is a general form of the penalty term, η(m) is the m-th derivative of

η for m ≥ 2, and λ ≥ 0 is a roughness penalty parameter that can be chosen by generalized

cross validation. For m = 2, the penalty can be expressed as
∫
[η′′(u)]2du = γTPγ, where P

is symmetric and positive semidefinite.
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3.3 Asymptotic Theories

To present asymptotic theories, we first introduce a few notations. Let ζ be the uncon-

strained parameter vector after reparameterization of β and J(ζ) = ∂β/∂ζ the Jacobian

transformation matrix. Denote J(ζ0) by J0, where ζ0 is the true value of ζ. For ease of

notation, we replace tj with j and let xij = xi,tj−1
. Define mij(a) = −κij(δija− log(1+ ea)),

where κij = I{Ai < tj ≤ Di}. Thus mij(α0j + η0(x
T
ijβ0)) is the negative log-likelihood for

individual i at time j. We write the number of splines basis q+K simply as K for simplicity

since K diverges with n. Without loss of generality, we consider interval [0, 1] for [a, b].

Further, we define the “projection”

(η̃0 = (η̃01, . . . , η̃0d)
T, α̃0) = argmin

η,α
E[

J∑
j=1

m′′
ij(a0j)∥η′0(xT

ijβ0)xij − αj − η(xT
ijβ0)∥2]. (5)

We also need the following regularity conditions to establish our results.

(A1) P (κij = 1|xij) > 0 for all j ∈ {1, . . . , J}. P (δij = 1|Ai ≤ tj ≤ Di,xij) = pij.

(A2) xij are bounded and xT
ijβ0 takes value in [0, 1].

(A3) η0 ∈ W p([0, 1]) (Sobolev space of order p) for some integer p ≥ 2. We also assume

η̃0j ∈ W p([0, 1]), j = 1, . . . , J. Dimension K of the spline space satisfies K → ∞ and

Klog(n)/n → 0.

(A4)

E[JT
0

J∑
j=1

m′′
ij(a0j){η′0(xT

ijβ0)xij − α̃0j − η̃0(x
T
ijβ0)}⊗2J0]

and

E[
J∑

j=1

m′′
ij(a0j)(η

′
0(x

T
ijβ0))

2xijx
T
ij]

are positive-definite matrices, where a⊗2 = aaT for any (column) vector a.
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(A5) The splines degree q satisfies q ≥ max{p− 1,m}.

Remark 1. Assumption (A1) specifies the true model. For assumption (A2), boundedness of

predictors is usually assumed for spline-based estimation, since spline functions are typically

constructed on a finite closed interval. (A3) assumes the smoothness of the true function.

The matrices in (A4) are related to the asymptotic covariance matrix of the index parameter.

Some projection similar to that defined in (5) is often used in separametric models, which

represents the effect of the nonparametric part on the parametric part. If J = 1, η̃ takes the

form of conditional expectation as in Liang et al. (2010). For the general case, there seems

to be no simple characterization of η̃.

The following result shows consistency of penalized-spline likelihood estimators of the

unknown function η, the baselines α, and single-index coefficients β.

Theorem 1. Under assumptions (A1)-(A5), and that K(K−2p+λK2(m−p)++ 1
nλ1/(2m) ∧ K

n
) =

o(1), there exists a local maximizer of the penalized-spline (log-)likelihood (4) that satisfies

∥η̂ − η0∥2 + ∥α̂−α0∥2 + ∥β̂ − β0∥2 = Op

(
K−2p + λK2(m−p)+ +

1

nλ1/(2m)
∧ K

n

)
.

Remark 2. The first two terms in the rate correspond to squared bias and the third is the

variance term. To see that the rate obtained here can produce the optimal rate, we can choose

K ≍ n
1

2p+1 and λ ≲ n− 2m
2p+1 , and we will get the optimal rate n− 2p

2p+1 . This situation is often

referred to as “light penalization” where the complexity is mainly controlled by choosing the

optimal number of knots. On the other hand, assuming m = p, choosing λ ≍ n− 2p
2p+1 and K

can be much larger than n
1

2p+1 , we still can get the optimal rate n− 2p
2p+1 , which is referred to

as “heavy penalization”.

The result below establishes asymptotic normality for the single-index coefficients β.
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Theorem 2. Under assumptions for Theorem 1, there exists a local maximizer of the

penalized-spline (log-)likelihood (4) that satisfies

√
n(β̂ − β0)

d→ N(0,J0Σ
−1JT

0 ),

where Σ = JT
0

{∑J
j=1m

′′
ij(a0j)

(
η′0(x

T
ijβ0)xij − α̃0j − η̃0(x

T
ijβ0)

)⊗2
}
J0, and α̃0j, η̃0 are as

defined in (5).

Proofs of both Theorems 1 and 2 are given in online supplementary materials.

3.4 Algorithm

We propose an efficient iterative algorithm to maximize the penalized-spline log-likelihood

function (4). The solution can be decomposed to two components: the single-index coeffi-

cients β and the rest coefficients γα = (α,γ). They can be estimated iteratively, or through

the profile likelihood estimation (Liang et al., 2010; Yu et al., 2017) using standard nonlinear

optimization software such as nlm. However, large nonlinear optimization may be computa-

tionally expensive and unstable. Instead, we advocate an iterative algorithm, where β and

γα are estimated iteratively. Specifically, given the single-index coefficients β̂, the P-spline

estimates, γ̂α,λ, can be obtained straightforwardly as γαBα(β̂
T
xi,tj−1

) is linear with respect

to coefficients γα. Existing tools such as gam function in the R package mgcv can be readily

used for the P-spline estimation. To estimate the single-index coefficient β, we apply the

following linear approximation to the unknown function η, so that

η(β
T

xi,tj−1
) ≈ η(β

T

0xi,tj−1
) + [∇η(β

T

0xi,tj−1
)]

T

(β − β0). (6)

We further approximate η(β
T

0xi,tj−1
) by γ̂

T

α,λBα(β̂
T
xi,tj−1

) using an estimated β̂ for β0 along

with the spline approximation. Consequently, the highly nonlinear problem of maximizing
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(4) turns into a linear problem facilitating an efficient algorithm summarized below.

Step 0 Obtain an initial estimate for the single-index coefficient β̂(0) using the Cox discrete

hazard model. Reparameterize β̂(0), such that ∥β̂(0)∥2 = 1 and sgn(β̂
(0)
1 ) = 1.

Step 1 Set β̂ = β̂(0), so that the problem reduces to a univariate smoothing problem. We

maximize the penalized-spline log-likelihood objective function (4) with respect to

γα, and obtain the P-spline estimates γ̂α,λ.

Step 2 With the linear approximation (6), we update the single-index coefficient β̂ by

maximizing the log-likelihood function (4) with respect to β. Reparameterize β̂

such that ∥β̂∥2 = 1 and sgn(β̂1) = 1.

Step 3 Repeat steps 1 and 2 until all parameter estimates converge.

3.5 Connection to Existing Bankruptcy Prediction Models

Our default-prediction single-index models (DSI) shows great promises especially in cali-

bration performance as demonstrated in the next section. It is the first model passing the

Hosmer-Lemeshow test including 2008 financial crisis period on a comprehensive US cor-

porate bankruptcy database, to the best of out knowledge. Furthermore, it is flexible and

semiparametric, encompassing the state-of-the-art CHS model for bankruptcy prediction.

Our approach is also partly motivated by the class of discrete transformation models

(DTM, Ding et al. (2012)), which is a parametric class of transformation survival models

that yield better performance comparing to CHS model. In particular, DTM is derived

by applying a class of monotonic transformation functions G(·), inverses of logarithm and

Box-Cox transformations, to −log[S(tj|xtj)/S(tj−1|xtj−1
)], where S(tj|xtj) is the conditional
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survival function. That is,

G

(
−log

S(tj|xtj)

S(tj−1|xtj−1
)

)
= exp(β

T

xtj)G

(
−log

S0(tj)

S0(tj−1)

)
, (7)

where S0(tj) is the baseline survival function. The DTMmodel is motivated by its continuous

counterpart (Zeng and Lin, 2006), which has the following transformation relationship,

d

dt
G(Λ(t|xt)) = exp{βTxt}

d

dt
G(Λ0(t)), (8)

where Λ(t|xt) =
∫ t

0
λ0(s) exp(β

T
x(s))ds is the cumulative conditional hazard function. It

is important to note that (7) and (8) are fundamentally different as (7) essentially applies

the transformation function G(·) to the difference of cumulative hazard, while (8) applies

G(·) to the cumulative hazard and then takes derivative. The continuous survival model

would not be applicable for corporate default prediction due to the use of calendar time,

that companies do not share the common origin time, and that the conditional cumulative

hazard function Λ(t|xt) would be ill-defined. Similarly, the continuous counterpart of our

single-index hazard model (Wang, 2004; Huang and Liu, 2006; Lu et al., 2006) is not suitable

for the bankruptcy prediction application.

We can rewrite the DTM model of transformation relationship (7) as

pi,tj
1− pi,tj

= G∗
(
exp(α∗

j + β
T

xtj)
)
, (9)

where G∗(u) = G−1(log(1 + u)) and α∗
j is the transformed baseline that only depends on

time. Interestingly, we further find that if G(·) in equation (7) is chosen to be the inverse

of a family of logarithm transformation considered by Ding et al. (2012) and Zeng and Lin

(2006), which is defined as Gc(u) = (exp(cu) − 1)/c for c > 0 and Gc(u) = u if c = 0, then

G∗
c(u) = (cu+1)1/c−1 for c > 0 and G∗

c(u) = exp(u)−1 if c = 0, which is the same Box-Cox
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transformation considered by Zeng and Lin (2006) and Chen et al. (2002).

Our proposed DSI model (1) can be rewritten as

pi,tj
1− pi,tj

= exp
(
α∗
j + η(β

T

xtj)
)
. (10)

Note that both DTM (model (9)) and our proposed DSI (model (10)) encompass the state-

of-the-art CHS model for corporate bankruptcy prediction. However, DTM adopts a class of

monotonic parametric transformations, Box-Cox transformations, G∗(·), on the exponential

term exp(α∗
j +β

T
xtj), while DSI applies a flexible nonparametric function η(·) to the linear

projection or single index β
T
xtj . Indeed, we discover an interesting V-shaped relationship,

which is discussed next.

4 Empirical Results

We report empirical results of our proposed default-prediction single-index hazard model

(DSI) on the bankruptcy data described in Section 2. In particular, we compare our DSI

with popular benchmark models, namely, the state-of-the-art CHS (Campbell et al., 2008)

model in finance and the optimal discrete transformation survival model (DTM) (Ding et al.,

2012). We document the estimation results based on the full sample data from 1980 to

2016. We then examine models’ out-of-sample prediction performance through an expanding

window. A robustness check over various prediction periods is conducted and included in

online supplementary materials.
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4.1 Estimation Results and Assessment of PD Prediction Accu-

racy

After fitting the default-prediction single-index hazard model on the bankruptcy database we

built, an interesting nonlinear relationship is unveiled from the estimated unknown flexible

function η̂. We visualize a V shape in Figure 2, where the shaded interval is the 95%

confidence band. It is clear that the relationship depicted in Figure 2 is nonlinear, indicating

a severe violation to the common assumption of linearity adopted by popular models such as

CHS (Campbell et al., 2008). This interesting finding may also provide some initial empirical

evidence to the so-called “financial frictions”, where a firm with an extremely low index value

may suffer from a similar risk of bankruptcy as a firm with an extremely high index value

due to reasons like a restricted credit supply (Giordani et al., 2014).
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Figure 2: Estimated unknown flexible function η̂(·) from the proposed default-prediction
single-index hazard model. The range of horizontal axis is the estimated “single-index”
based on the full sample period.

In the binary prediction problem, the probabilistic prediction accuracy is commonly as-

sessed in two dimensions: calibration and discrimination. A model with good calibration

performance is crucial for PD estimation, especially in economic environments, like the one
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the world is currently in, where closely-monitored stress testing and CCA are vitally impor-

tant. However, in bankruptcy literature, formal calibration testing is rarely performed. Ding

et al. (2012) employed the popular Hosmer-Lemeshow (HL) goodness-of-fit test (Hosmer Jr

et al., 2013) to evaluate the calibration performance for corporate bankruptcy prediction.

Hosmer-Lemeshow (HL) goodness-of-fit test assesses how close it is between the expected

and observed event rates. Its null hypothesis can be interpreted as the model has good

calibration. Hence a larger p-value would indicate better calibration performance.

Discrimination, on the other hand, evaluates a model’s ability to differentiate the obser-

vations in different classes, i.e., bankruptcy vs. non-bankruptcy. One of the most commonly-

used measures of discrimination is the area under the receiver operating characteristic (ROC)

curve, known as AUC, where AUC = 0.5 for a completely random guess and AUC = 1 for

a perfect discrimination. A higher AUC value indicates better discrimination.

In addition, decile tables and pseudo-R2 are commonly-used metrics for assessing model

performance in the corporate bankruptcy prediction literature. The decile table summarizes

the proportion of observed events in cumulative bins that are constructed by categorizing the

sorted predicted probabilities from the largest to smallest. For example, the cumulative bins

can be 90-100%, 80-100%,..., 0-100% of predicted PDs, and for each bin, the proportion of

the bankruptcies out of total number of bankruptcies is calculated. Therefore, the calculated

proportions monotonically increase across the cumulative bins, and it equals to 1 for the bin of

0-100%. A larger number in the top bins is desirable. Pseudo-R2 is defined as 1−logL1/logL0,

where L1 and L0 are the likelihood from fitted model and null model respectively.

In Panel A of Table 2, we summarize the model estimation results on the full sample

period. Importantly, we observe that our proposed default-prediction single-index hazard

model is able to pass the Hosmer-Lemeshow goodness-of-fit test with a large p-value of 0.665.

On the other hand, the Hosmer-Lemeshow test rejects both benchmark models, implying that

their estimated PDs are clearly not well-calibrated. Furthermore, in the cumulative decile
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ranking table, DSI consistently shows a higher proportion of bankruptcy firms in the top

bins than the other two models. For example, in the top 10% bin, 65.2% bankruptcy firms

are captured by DSI, while CHS and DTM capture 63.6% and 64.0%, respectively. The

reported pseudo-R2 and AUC deliver a similar message, showing an enhanced in-sample

performance of the DSI model over the CHS and DTM models. Taken together, we con-

clude that the proposed DSI model has substantially improved the accuracy for corporate

bankruptcy prediction, especially in terms of the calibration performance for model fitting.

Table 2: In-sample and out-of-sample prediction assessment based on the p-value of Hosmer-Lemeshow (H-
L) goodness-of-fit χ2-test, AUC, Pseudo-R2, and the decile ranking table for the proposed default-prediction
single-index hazard model (DSI) for corporate bankruptcy prediction; a state-of-the-art bankruptcy predic-
tion model in finance, CHS of Campbell et al. (2008); and an optimal discrete transformation survival model
(DTM) of Ding et al. (2012). The in-sample model fitting is based on the full sample period from 1980-2016,
and the out-of-sample prediction is based on expanding window predictions.

Panel A. In-sample
(1980-2016)

Panel B. Out-of-sample
(2006-2016)

DSI CHS DTM DSI CHS DTM

p-value of H-L χ2-test 0.665 0.000 0.000 0.281 0.000 0.000
AUC 0.858 0.844 0.845 0.881 0.823 0.818
Pseudo-R2 0.196 0.182 0.186 0.275 0.235 0.233

Decile rankings

90-100% 0.652 0.636 0.640 0.730 0.645 0.652
80-100% 0.795 0.781 0.783 0.833 0.759 0.752
70-100% 0.852 0.840 0.846 0.872 0.794 0.801
60-100% 0.887 0.866 0.868 0.901 0.826 0.823
50-100% 0.910 0.894 0.895 0.926 0.840 0.844
0-100% 1.000 1.000 1.000 1.000 1.000 1.000

We further cross-compare the DSI model with the CHS model by investigating the two

tail ends from each model. It is interesting to note that there are 14 bankrupted companies

with their predicted PDs ranked in the top 10 percentile from DSI but ranked in the lowest

or safest 10 percentile from CHS. However, we find none if the opposite filter is applied, i.e.,

the lowest 10 percentile from DSI but highest 10 percentile from CHS. This fact again echoes
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with the non-linear V-shaped relationship discovered in Figure 2.

4.2 Out-of-Sample Prediction

We now shift our attention to the out-of-sample performance. To evaluate models’ out-of-

sample performance, we adopt an expanding window approach. Specifically, we start with

training data from 1980 to 2005 and make predictions for the following year of 2006. We

then expand our training data by one year (i.e. from 1980 to 2006) and make predictions

for the year of 2007. We keep expanding this training sample window until the last year in

our sampling period is used as the testing data.

We summarize the out-of-sample prediction results in Panel B of Table 2. Consistent with

our discussion in the previous section, our proposed default-prediction single-index hazard

model tends to outperform the other two benchmark models in all the commonly-adopted

metrics in the bankruptcy prediction literature. For example, the DSI passed the Hosmer-

Lemeshow calibration test with a p-value of 0.281 whereas neither CHS (Campbell et al.,

2008) nor the DTM (Ding et al., 2012) passed the test. Furthermore, in the top 10% bin, we

observe nearly 10% more (73.0% vs. 64.5% vs. 65.2%) bankruptcy firms captured correctly

by DSI, comparing to that of CHS model and DTM model. Consistent improvements in

pseudo-R2 and AUC demonstrate the advantage of our proposed DSI in providing better

prediction performance. A robustness check across different periods are conducted, and the

results are summarized in Table S2 of supplementary.

In summary, from our limited empirical analysis, an interesting non-linear, non-monotonic,

V-shaped relationship is unveiled by our proposed DSI hazard model, while current most

popular models in finance, based on the linearity assumption, would not have the ability to

capture. Most importantly, to the best of knowledge, DSI is perhaps the only model that can

pass the Hosmer-Lemeshow goodness-of-fit test and provide substantially better-calibrated

PD estimates both in-sample and out-of-sample. This may have potentially important im-
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plications in practice. As shown in Figure 1, the DSI, CHS, and DTM models yield similar

predicted PDs for the majority of the lower percentiles in the CHS predicted PDs. However,

the three predicted PD curves are noticeably different as the predicted PDs get larger. In the

top one percentile of CHS predicted PDs, instead of lining up along the 45-degree CHS line,

the predicted PDs from the DSI model fall considerably under the CHS prediction curve with

the DTM predictions in between. For the CHS predicted PDs between 85 to 99 percentiles in

the shaded window, the order is completely reversed where the predicted PDs from the DSI

model generally falls slightly above the 45-degree CHS line. These interesting findings may

suggest that the cash reserves based on majority small predicted PDs from CHS are similar

as those from the default-prediction single-index hazard model and the transformation sur-

vival model. But for higher predicted PDs, the cash reserves based on the CHS model may

be possibly optimistic or overly conservative, especially for exceptionally high PDs.

4.3 Economic Value

A direct application of a PD prediction model is that it can be used as a credit scoring

model for pricing during the lending practice. Specifically, in the loan market, different

banks may adopt different credit scoring models to assess loans to individual firms, after

which the banks make decisions of either reject or lend money with certain price. If not

rejected, the borrowers then choose the lender who offers the lowest price (credit spread),

which is mainly determined by the predicted value of borrower’s default probability. Here we

adopt the following expression of credit spread derived by Blöchlinger and Leippold (2006).

R =
pi,tj

1− pi,tj
LGD+ k, (11)

where LGD is loss in loan value given default, which is often prespecified; k is also a pre-

specified value that is the credit spread for the highest quality loan.
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Following a similar setup of Agarwal and Taffler (2008), we assume a 100 billion (USD)

loan market and three lenders with each one using a different PD prediction model, namely

DSI, CHS, and DTM. We refit all three models by excluding financial firms as potential

lenders and use the expanding window approach to predict PD for each year from 2006 to

2016. All three lenders reject the loans in the highest 5% PD category. If at least two lenders

offer the same price to a loan according to (11), the borrower will randomly choose one.

Table 3 shows the empirical results of economic value for each lender under the described

lending practice. The results are averaged over years, where the left panel aggregates the

entire prediction period (2006-2016) which includes 2008 financial crisis, while the aggre-

gation period of the right panel (2011-2016) excludes the financial crisis. It is clear to see

that for both scenarios, the lender who adopts the proposed default-prediction single-index

model receives the highest profit and largest market share. The profits based on DSI and

DTM are substantially larger than CHS, providing another possible evidence that the lin-

earity assumption in CHS may be inadequate to characterize the actual relationship. The

average credit spread is 44 base points for DSI in both panels, slightly higher than DTM

but much lower than CHS. Credit spread relies on the predicted PD, and a higher credit

spread leads to a higher revenue but lower market share. Thus, the predicted PD by DSI

well balances such a tradeoff, leading to the highest profit. The results shown in Table 3

provide another empirical evidence that the proposed DSI model is more preferred than the

other two benchmarking models in a lending practice. Additionally, we notice that the share

of defaulters for DSI is higher than the other two. This does not contradict to the decile

rankings in Table 2 as the latter is evaluated for each model independently while the share of

defaulters is based on a shared market where each company is obligated only to one lender.
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Table 3: Comparison of economic value between different PD prediction models. Left panel shows the
results averaged over 2006 to 2016 while the right panel is aggregated from 2011 to 2016. Market share
is the proportion of borrowers obligated to a lender out of all firms that are not rejected by all three
lenders. Share of defaulters is the percentage of defaulted firms to which the loan is granted out of the total
number of default. Average credit spread is the credit spread averaged over all firms obligated to a lender.
Revenue = Market size ($100B) × Market share × Average credit spread, Loss = Market size ($100B) ×
Share of defaulters×Prior probability of default×LGD, where the prior probability of default is the sample
failure rate in the same prediction year, and Profit = Revenue− Loss.

2006-2016 2011-2016

DSI CHS DTM DSI CHS DTM

Market share (%) 48.25 6.58 45.17 49.26 5.08 45.67
Share of defaulters (%) 23.22 13.29 11.39 22.67 16.19 7.14
Average credit spread (%) 0.44 0.78 0.37 0.44 0.75 0.37
Revenue ($mm) 212.72 52.47 167.50 217.03 38.04 169.66
Loss ($mm) 29.76 1.86 22.26 27.79 2.03 8.78
Profit ($mm) 182.96 50.61 145.23 189.24 36.01 160.88

5 Simulation Study

We further conduct a simulation study, mimicking the real bankruptcy process. We simulate

bankruptcy data largely based on the distribution of the real bankruptcy data. Specifically,

at each time point j = 1, ..., 36, we generate Nj firms, where Nj ∼ Poisson(N∗
j ), and N∗

j

is a proportion of the number of new firms entered at time j in the real data.5 For each

simulated firm that enters at time j, the covariates (bankruptcy predictors) are simulated

from multivariate normal distribution, using the same mean and variance-covariance matrix

as the real bankruptcy data. The probability of default of company i is calculated as 1/(1+

exp(−α̂j − η(β̂
T
xij))), where η(u) = 5.5u + 1.3u2 − 1.8u3 is adopted to mimic the V shape

shown in Figure 2. The time-varying baseline parameters are obtained from α̂j = log(
p̂j

1−p̂j
),

where p̂j is the overall default rate at time j observed from our real bankruptcy data. The

binary bankruptcy indicator is simulated based on the Bernoulli distribution with calculated

probability of default in previous step. Firms entered at time j stays until default happens.

5For the results presented, we use a proportion (0.1) to lower the sample size to reduce the computational
cost of simulation. Qualitatively similar results are observed otherwise.
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We generate 500 bankruptcy datasets and apply the three modeling approaches, the

default-prediction single-index hazard model (DSI), the state-of-the-art discrete linear haz-

ard model CHS, and the “optimal” discrete transformation survival model (DTM), on each

simulated data. Table 4 compares the mean squared error, bias and standard error of co-

efficient estimates across the three models based on the 500 simulated datasets. It is clear

that the DSI model provides the least MSE and bias in coefficient estimates. Table 5 further

shows several metrics in models’ performance assessment. Specifically, based on the 500

replicates, we calculate (i) the mean of absolute deviance of the estimated PD, i.e., |p̂−p0|,

where p0 is the true PD and p̂ is the estimated PD; (ii) the mean of AUC; (iii) the mean

of pseudo-R2; and (iv) the Hosmer-Lemeshow calibration test rejection rate. The advantage

of adopting the proposed DSI model is noticeable. Specifically, the PD estimates from DSI

model provide the minimum deviations from the true PDs. While neither CHS nor DTM

model passes the Hosmer-Lemeshow test among any of the 500 simulation runs, only about

4.6% of the simulation runs reject our proposed DSI model, suggesting a strong calibration

power of the DSI model in this simulation setting. In addition, we note that DSI model con-

sistently provides the highest AUC values and pseudo-R2 among the three models. Overall,

through this limited simulation study mimicking the real bankruptcy process, we show that

the proposed DSI model for corporate bankruptcy is able to provide superior calibration and

discrimination performance in predicting the probability of default.

6 Asset Pricing

An important application of predicted PDs is to be utilized as the default risk for constructing

investment portfolios. As the conjecture in Fama and French (1996), investors may expect a

positive association between the expected return and default risk when holding stocks. Such

a positive relationship has been confirmed by a number of studies (Vassalou and Xing, 2004;
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Table 4: Mean squared error (MSE), bias, and standard error (S.E.) of coefficient estimates based on the
simulated data, mimicking the real bankruptcy data, for the proposed default-prediction single-index hazard
model (DSI); a state-of-the-art bankruptcy prediction model in finance, CHS of Campbell et al. (2008); and
an optimal discrete transformation survival model (DTM) of Ding et al. (2012).

DSI CHS DTM

MSE Bias S.E. MSE Bias S.E. MSE Bias S.E.

LTMTA 0.000 0.006 0.021 0.160 -0.399 0.031 0.197 -0.443 0.017
NIMTA 0.000 -0.010 0.020 0.094 0.296 0.082 0.253 0.469 0.182
CASHMTA 0.000 -0.012 0.018 0.076 0.256 0.103 0.325 0.496 0.281
MBE 0.006 0.077 0.007 0.088 0.296 0.030 0.098 0.094 0.298
RSIZE 0.022 -0.149 0.004 0.369 -0.604 0.068 0.361 -0.236 0.553
EXRET 0.000 -0.008 0.010 0.002 0.037 0.020 0.015 0.098 0.072
SIGMA 0.001 -0.020 0.025 0.068 -0.259 0.019 0.049 -0.167 0.146
PRICE 0.031 0.176 0.007 0.629 0.786 0.105 0.522 0.408 0.597

Table 5: Assessment of model fitting and prediction accuracy based on the simulated data, mimicking
the real bankruptcy process, for the proposed default-prediction single-index hazard model (DSI); a state-
of-the-art bankruptcy prediction model in finance, CHS of Campbell et al. (2008); and an optimal discrete
transformation survival model (DTM) of Ding et al. (2012).

DSI CHS DTM

Mean S.E. Mean S.E. Mean S.E.

|p̂− p0| 0.0030 0.0001 0.0136 0.0007 0.0145 0.0006
AUC 0.9511 0.0064 0.7864 0.0172 0.7878 0.0167
Psuedo-R2 0.5422 0.0170 0.2202 0.0240 0.1824 0.0199
H-L test rejection rate 0.0460 1.0000 1.0000

Chava and Jarrow, 2004; Aretz et al., 2018). In contrast, some empirical studies document a

negative relationship that holding stocks with high default probabilities harvests anomalous

low returns (Dichev, 1998; Griffin and Lemmon, 2002; Campbell et al., 2008; Da and Gao,

2010; George and Hwang, 2010; Gao et al., 2018).

This puzzling default risk anomaly has attracted vital attention due to its challenges in

both practice and theory. We revisit the puzzle by using the predicted PDs from our proposed

DSI model in the extended sample period including 2008 financial crisis. In particular, we

obtain firms’ one-year-ahead predicted PDs as described in Section 4 using the expanding
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window approach starting from 1980-1982, and construct 10 decile-portfolios by sorting the

predicted PDs. These 10 portfolios are updated each year accordingly. We also construct

three long-short (buy-sell) portfolios, LS9010, LS9505, and LS9901, to investigate the risk-

return anomaly. That is, we suppose investor to hold the stocks associated with highest 10

(5, or 1) percent default risk in long position and those with lowest 10 (5, or 1) percent in

short position for a number of years (1983 to 2016 for our study). If the positive relation

between risk and return holds, such long-short portfolios would be expected to gain positive

excess returns, which are the difference between stock and the S&P 500 index return.

Table 6 reports the asset pricing results. In Panel A, we show that the long-short port-

folios LS9010, LS9505, and LS9901 yield monthly average excess returns of -0.17%, -0.27%,

and -1.39% respectively. The most extreme portfolio has significant excess returns with t-

statistics of −2.12. This observation implies a weak anomaly, i.e., the distressed stocks with

high predicted PDs from our DSI model yield negative returns.

Table 6: Returns on Bankruptcy Risk-Sorted Portfolios

This table reports the average value-weighted excess returns and its regression of two models: Fama-French three-factor model (Market, SMB, HML), and Fama-
French five-factor model (Market, SMB, HML, RMW, CMA). These factors are market factor (Market), size factor (SMB), value factor (HML), profitability
factor (RMW), and investment factor (CMA). We sort all stocks based on the one-year ahead expanding window prediction of bankruptcy from our default-
prediction single-index model and divide the stocks into 10 portfolios based on deciles. For example, 0 to 10th percentile is denoted as ”0010” and 90th to 100th
percentile is ”9000”. The long-short portfolios LS9010 or LS9505 go long with the 10% or 5% riskiest stocks and short the 10% or 5% safest stocks. The results
for mean excess returns, alphas of two models are reported in Panel A. In Panel B, we show the Fama-French three-factor regression coefficients. We also report
the corresponding values of t-statistics in parentheses.

Portfolios 0010 1020 2030 3040 4050 5060 6070 7080 8090 9000 LS9010 LS9505 LS9901
Risk Low High

Panel A. Portfolio Excess Return & Alphas of Factor Models

Mean excess return 0.71 0.75 0.72 0.78 0.63 0.61 0.78 0.70 0.86 0.54 −0.17 −0.27 −1.39
(2.91) (3.32) (3.19) (3.46) (2.8) (2.73) (3.21) (2.69) (2.43) (1.22) (−0.50) (−0.65) (−2.12)

3-factor alpha 0.13 0.17 0.14 0.15 −0.03 −0.04 0.01 −0.15 −0.31 −0.65 −0.78 −0.86 −1.77
(1.59) (2.42) (1.49) (1.99) (−0.29) (−0.47) (0.09) (−1.17) (−2.07) (−2.65) (−3.03) (−2.72) (−2.86)

5-factor alpha 0.12 0.10 0.03 0.15 −0.04 −0.08 −0.12 −0.17 −0.08 −0.31 −0.43 −0.49 −1.15
(1.24) (1.35) (0.28) (1.79) (−0.37) (−0.8) (−1.21) (−1.38) (−0.49) (−1.14) (−1.55) (−1.46) (−1.63)

Panel B. Three-Factor Regression Coefficients

Market 0.98 0.94 0.92 0.95 0.97 0.94 1.06 1.11 1.43 1.50 0.53 0.52 0.35
(41.73) (46.1) (31.71) (51.99) (26.6) (37.43) (25.08) (24.46) (15.20) (17.58) (6.13) (4.30) (2.23)

SMB −0.03 −0.07 0.01 0.03 −0.01 −0.03 −0.08 −0.11 −0.01 0.65 0.68 0.89 1.15
(−0.83) (−2.66) (0.17) (0.84) (−0.21) (−0.48) (−0.95) (−1.68) (−0.13) (6.13) (6.80) (6.41) (4.43)

HML −0.27 −0.16 −0.12 −0.02 0.08 0.11 0.27 0.46 0.86 0.63 0.90 0.76 0.36
(−6.88) (−4.8) (−1.97) (−0.51) (2.05) (2.40) (3.93) (6.49) (6.03) (4.44) (6.34) (3.24) (0.87)

Panel C. Portfolio Characteristics

RSIZE −9.74 −9.78 −9.83 −9.90 −10.04 −10.17 −10.26 −10.42 −11.02 −11.69
MBE 2.15 2.15 2.13 2.12 2.09 2.00 1.92 1.84 1.88 2.60
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In addition to the mean excess return, we also attempt to offer some insights to an impor-

tant theoretical asset-pricing question: “How can factor models explain the stock return?”

Specifically, we regress each portfolio’s monthly excess return on the factors and report the

estimated intercepts (alphas). If a factor model can explain stocks’ excess return, the esti-

mated alpha is expected to be zero. We apply both Fama-French three-factor model (Fama

and French, 1996) and the five-factor model (Fama and French, 2015), which are among the

most agreed factor models. The three-factor model includes the market factor (Market), the

size factor (Small Minus Big, or SMB), and the value factor (High Minus Low, or HML),

while the five-factor model has two additional factors: profitability factor (Robust Minus

Weak, or RMW), and investment factor (Conservative Minus Aggressive, or CMA).

As shown in Panel A, the three-factor model cannot fully explain the abnormal negative

excess return, as the estimated alphas are significant for the long-short portfolios LS9010

(-0.78%), LS9505 (-0.86%), and LS9901 (-1.77%). However, the five-factor model can explain

the excess return with insignificant alphas. These findings imply that the distress anomaly

as evidenced by negative alphas may still exist but has clearly weakened, especially under the

five-factor model, in the extended sample period including 2008 financial crisis comparing to

the earlier sample periods considered in Campbell et al. (2008) or Ding et al. (2012). Panel

B shows the factor loadings (estimated coefficients) for the three-factor models. The values

are qualitatively consistent with those in the existing literature (Campbell et al., 2008; Ding

et al., 2012; Hou et al., 2015).

We also report the portfolio characteristics in Panel C. The average relative size (RSIZE)

of portfolios implies that the size decreases along with the increase of default risk. On the

other hand, the firms in the two tails of predicted PDs are associated with a high market-to-

book equity ratio (MBE). These two pieces of evidence are consistent with Campbell et al.

(2008) and Ding et al. (2012). In addition, one referee made an interesting suggestion that

constructing a new distress factor using our calibrated default probability may also have
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important asset pricing implications. This is an interesting question to explore further in

the future.6

In summary, our findings based on the period of 1983 to 2016 imply that the default risk

anomaly has weakened or even disappeared using the predicted PDs from the proposed DSI

model. The stocks with higher default risk no longer earn strong anomalously lower excess

returns than those firms with lower default risk after adjusting for the risk factors.

7 Conclusion

In this paper, we develop a flexible default-prediction single-index hazard model (DSI) for

corporate PD prediction, and asymptotic properties have been established for a penalized-

spline likelihood estimation. Applying the proposed DSI model to a comprehensive corporate

bankruptcy database we build, we have a number of interesting findings. First, we discover

a V-shaped relationship of the systematic component with the “financial default” single

index. This is in stark contrast to the popular linear assumption in the state-of-the-art

bankruptcy prediction model CHS (Campbell et al., 2008), indeed the Cox discrete hazard

model (Cox, 1972). The uncovered V shape suggests that the linearity assumption may

be severely violated. Second and most importantly, the proposed DSI model passes the

Hosmer-Lemeshow goodness-of-fit calibration tests while neither does CHS nor an optimal

transformation survival model (DTM). In our empirical study, we observe that majority

small predicted PDs from the three models are close to each other. However, for higher

predicted PDs, the three models yield noticeably different predictions. These findings may

have important implications in practice. For example, the cash or capital reserve calculations

6We have attempted to build a new factor called distress-minus-healthy (DMH). Preliminary results
have shown that this factor can explain the same distress anomaly we investigated here. Furthermore, we
re-examined a profitability anomaly that is associated with the gross profits-to-assets (GP/A) ratio (Novy-
Marx, 2013). Our preliminary results show that the new DMH factor helps but still cannot fully explain the
profitability anomalies. A more in-depth study is needed to explore the new distress factor and potential
implications.
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based on the CHS predicted PDs may be optimistic or conservative, especially for extremely

high PDs. Third, we examine the important asset pricing implication based on the predicted

PDs from the proposed model. We find that the negative distress anomaly, that the higher

is the distress risk the lower excess return even after controlling important factors, has

weakened and even disappeared during the extended period including 2008 financial crisis.

Probability of default prediction has many applications in a variety of fields beyond

corporate bankruptcy, such as credit card, commercial and residential loans, corporate bonds,

mortgage borrowing, and foreclosure process. It is our hope that the developed flexible

default-prediction single-index hazard model may be potentially adopted in these fields to

deliver accurate prediction and high impact in practice.
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Supplemental Materials for “Corporate Probability of

Default: A Single-Index Hazard Model Approach”

A Additional Tables and Empirical Results

A.1 Bankruptcy Frequency Table

In Table S1, we summarize the bankruptcy events and active firms in our database. The

second column shows the number of bankruptcies reported, and the third column is the total

number of active firms each year. The last column summarizes the corresponding bankruptcy

percentage. We observe more bankruptcy events following the recession in early 1990s, the

dot-com bubble burst in 2001, and the 2008 financial crisis.

A.2 Robustness Check with Different Prediction Periods

In order to check the robustness of the proposed default-prediction single-index hazard model

(DSI), we assess the prediction accuracy based on various prediction periods. Table S2 shows

the p-values of Hosmer-Lemeshow test, the AUC, and pseudo-R2. We find that our proposed

DSI passes the Hosmer-Lemeshow test over all prediction periods while delivering the highest

AUC values and pseudo-R2. It is clear that the proposed DSI consistently outperforms the

other two benchmark models. The improvement is even stronger when the testing periods

include 2008 financial crisis. Based on our limited empirical study, we find that the proposed

default-prediction single-index hazard model can offer robust prediction accuracy even when

2008 financial crisis is included.
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Table S1: Count of bankruptcy firms and total number of firms over year.

Year Bankruptcy firms Total firms Proportion (%)

1980 16 2477 0.565
1981 17 2588 0.580
1982 24 4209 0.546
1983 27 4757 0.547
1984 46 5188 0.867
1985 55 5209 0.979
1986 76 5312 1.318
1987 40 5508 0.635
1988 55 5537 0.795
1989 64 5296 1.190
1990 64 5227 1.358
1991 113 5152 2.038
1992 62 5343 1.048
1993 37 5523 0.598
1994 42 6694 0.553
1995 46 6898 0.565
1996 39 7260 0.468
1997 61 7477 0.669
1998 85 7459 0.965
1999 56 7010 0.685
2000 61 6824 0.806
2001 68 6304 0.984
2002 62 5621 1.050
2003 40 5175 0.696
2004 22 4946 0.344
2005 18 4877 0.328
2006 10 4822 0.166
2007 13 4773 0.210
2008 40 4608 0.825
2009 88 4284 1.914
2010 33 4099 0.781
2011 18 3940 0.406
2012 20 3785 0.476
2013 17 3670 0.409
2014 15 3721 0.403
2015 21 3774 0.450
2016 18 3690 0.461
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Table S2: Robustness check on out-of-sample prediction performance over different peri-
ods based on the p-value of Hosmer-Lemeshow (H-L) goodness-of-fit χ2-test, AUC, and
Pseudo-R2 for the proposed default-prediction single-index hazard model (DSI) for corpo-
rate bankruptcy prediction; a state-of-the-art bankruptcy prediction model in finance, CHS
of Campbell et al. (2008); and an optimal discrete transformation survival model (DTM) of
Ding et al. (2012).

p-value of H-L χ2-test AUC Pseudo-R2

Period DSI CHS DTM DSI CHS DTM DSI CHS DTM

2006-2016 0.281 0.000 0.000 0.881 0.823 0.818 0.275 0.235 0.233
2007-2016 0.139 0.000 0.000 0.875 0.814 0.809 0.268 0.227 0.223
2008-2016 0.094 0.000 0.000 0.873 0.811 0.805 0.268 0.226 0.222
2009-2016 0.120 0.000 0.000 0.876 0.830 0.828 0.294 0.266 0.264

B Derivation of Likelihood Function (3)

For bankruptcy prediction, discrete-time hazard model framework is most popularly adopted

(Shumway, 2001; Campbell et al., 2008; Tian et al., 2015). An appealing feature of the

discrete-time hazard model is the memoryless property, which implies that a company’s

default probability at time t is conditionally independent from that of time t− 1.

In particular, the companies in the data consist of two types: (i) companies that have

bankrupted at or before tJ (δi = 1) , and (ii) companies that have been censored at or before

tJ (δi = 0), where δi is the censoring indicator. For (i), the probability that firm i experiences
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bankruptcy at time Di can be expressed as

Pr(T = Di) = Pr(T = Di|T ≥ Di) Pr(T 6= Di − 1|T ≥ Di − 1) Pr(T 6= Di − 2|T ≥ Di − 2)...

...Pr(T 6= Ai + 1|T ≥ Ai + 1) Pr(T 6= Ai|T ≥ Ai)

= h(Di|xi,Di−1)[1− h(Di − 1|xi,Di−2)][1− h(Di − 2|xi,Di−3)]...

...[1− h(Ai + 1|xi,Ai)][1− h(Ai|xi,Ai−1)]

= pi,Di(1− pi,Di−1)(1− pi,Di−2)...(1− pi,Ai+1)(1− pi,Ai)

= pi,Di
∏

Ai≤t<Di

(1− pi,t).

Note that the i.i.d. assumption is not imposed. Similarly, for (ii), the censored companies,

the bankruptcy may happen after Di. So the corresponding probability is

Pr(T > Di) = Pr(T 6= Di|T ≥ Di) Pr(T 6= Di − 1|T ≥ Di − 1) Pr(T 6= Di − 2|T ≥ Di − 2)...

...Pr(T 6= Ai + 1|T ≥ Ai + 1) Pr(T 6= Ai|T ≥ Ai)

= [1− h(Di|xi,Di−1)][1− h(Di − 1|xi,Di−2)][1− h(Di − 2|xi,Di−3)]...

...[1− h(Ai + 1|xi,Ai)][1− h(Ai|xi,Ai−1)]

= (1− pi,Di)(1− pi,Di−1)(1− pi,Di−2)...(1− pi,Ai+1)(1− pi,Ai)

=
∏

j∈{j:Ai≤tj≤Di}

(1− pi,tj).

Let us denote Ti = {j : Ai ≤ tj ≤ Di} and T
(−1)
i = {j : Ai ≤ tj < Di}. Then the likelihood
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for all companies (i = 1, ..., n) is

L =
n∏
i=1

[Pr(T = Di)]
δi × [Pr(T > Di)]

1−δi

=
n∏
i=1

pi,Di ∏
j∈T (−1)

i

(1− pi,tj)


δi [∏

j∈Ti

(1− pi,tj)

]1−δi
,

where δi is the censoring indicator defined at the beginning.

By taking log on both sides, we obtain the log-likelihood function

l = logL =
n∑
i=1

δilogpi,Di + δi
∑

j∈T (−1)
i

log(1− pi,tj) + (1− δi)
∑
j∈Ti

log(1− pi,tj)

 .
It can be simplified by following algebra

l =
n∑
i=1

δilogpi,Di + δi
∑

j∈T (−1)
i

log(1− pi,tj) + (1− δi)
∑
j∈Ti

log(1− pi,tj)


=

n∑
i=1

[
δilogpi,Di − δilog(1− pi,Di) + (δi)

∑
j∈Ti

log(1− pi,tj) + (1− δi)
∑
j∈Ti

log(1− pi,tj)

]

=
n∑
i=1

[
δilog

(
pi,Di

1− pi,Di

)
+
∑
j∈Ti

log(1− pi,tj)

]
.

Now in the square bracket of last line, the first term can be rewritten as

δilog

(
pi,Di

1− pi,Di

)
=
∑
j∈Ti

δi,jlog

(
pi,tj

1− pi,tj

)
,

where δi,j = δiI{Di = tj}. The above equation holds because if δi = 0, then δi,j = 0 for all

j ∈ Ti; if δi = 1, then δi,j = 0 for all j ∈ T (−1)
i but δi,j = 1 for Di = tj.
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Finally, the log-likelihood has the following form

l =
n∑
i=1

[∑
j∈Ti

δi,jlog

(
pi,tj

1− pi,tj

)
+
∑
j∈Ti

log(1− pi,tj)

]

=
n∑
i=1

∑
j∈Ti

[
δi,jlog

(
pi,tj

1− pi,tj

)
+ log(1− pi,tj)

]

=
n∑
i=1

∑
j∈Ti

[
δi,jlogpi,tj + (1− δi,j)log(1− pi,tj)

]
,

which takes an equivalent form as the log-likelihood of the classical logistic regression.

C Technical Details and Proof of Theorems

C.1 Identifiability and Reparametrization

For model identifiability, the single-index parameter is constrained such that ||β|| = 1 and

the first element β1 > 0. We reparameterize β to handle this constraint. Let column vector

ζ = (ζ1, · · · , ζd−1)T and define βT = (1, ζT)/
√

1 + ||ζ||2. Now the reparametrized parameter

ζ is unconstrained. The Jacobian matrix of ∂β/∂ζ is

J(ζ) =
∂β

∂ζ
= −

(
1 + ‖ζ‖2

)− 3
2



ζ1 ζ2 · · · ζd−1

−(1 + ‖ζ‖2) + ζ21 ζ2ζ1 · · · ζd−1ζ1

ζ1ζ2 −(1 + ‖ζ‖2) + ζ22 · · · ζd−1ζ2
...

...
. . .

...

ζ1ζd−1 ζ2ζd−1 · · · −(1 + ‖ζ‖2) + ζ2d−1


.

C.2 Proof of Theorems 1 and 2

We provide proofs of Theorems 1 and 2. Lemmas and their proofs are presented in the end

of this section.
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First, we introduce some additional notations used in the proof. Denote the true param-

eters by g0 = (η0,α0 = (α01, . . . , α0J)T,β0). Denote `ij(η,α,β) the negative log-likelihood

for individual i at time tj, i.e., `ij(η,α,β) = −κij(δijlogpij + (1 − δij)log(1 − pij)), where

κij = I{Ai < tj ≤ Di}. Denote ‖η‖2(m) the penalty
∫

(η(m)(u))2du for some integer m ≥ 2,

where η(m) is the m-th derivative of η. The corresponding inner product is denoted by

〈η1, η2〉(m) =
∫
η
(m)
1 (u)η

(m)
2 (u)du. Denote E(·) the expectation and En(·) the sample average.

Let C be a generic positive constant whose value can change at different appearances.

C.2.1 Proof of Theorem 1

Theorem 1 follows immediately from Propositions 1 and 2 below, which bound the approxi-

mation and estimation error, respectively.

Proposition 1. Under the assumptions of Theorem 1, there is a local minimizer gλ =

(ηλ,αλ,βλ) = arg min
η,α,β E`(η,α,β) + λ‖η‖2(m) that satisfies

‖ηλ − η0‖2 + λ‖ηλ‖2(m) + ‖βλ − β0‖2 + ‖αλ −α0‖2 = O(K−2p + λK2(m−p)+),

where the minimization with respect to η is over η ∈ Gn with Gn being the space of splines

with the given degree and knots sequence,

Proof of Proposition 1. By Proposition 2.1 of Huang and Su (2021), there exists some

η∗ ∈ Gn with

‖η∗ − η0‖ = O(K−p), ‖η∗‖(m) = O(K(m−p)+), and ‖η∗ − η0‖∞ = O(K−p+1/2). (S1)

Denote s2 = K−2p + λK2(m−p)+ . We only need to show that for any ‖η − η∗‖2 + λ‖η −
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η∗‖2(m) + ‖β − β0‖2 + ‖α−α0‖2 = Ls2, with L > 0 sufficiently large,

E[`(η,α,β)] + λ‖η‖2(m) > E[`(η∗,α0,β0)] + λ‖η∗‖2(m), (S2)

which implies there exists a local minimizer of E[`(η,α,β)] + λ‖η‖2(m) that satisfies ‖ηλ −

η∗‖2 + λ‖ηλ − η∗‖2(m) + ‖βλ − β0‖2 + ‖αλ −α0‖2 = O(s2). Then, combining this with (S1)

and using triangle inequality, the results hold.

Now we show (S2). We note that

E[`(η,α,β)] + λ‖η‖2(m) − E[`(η0,α0,β0)]

≥ C(‖η − η0‖2 + ‖β − β0‖2 + ‖α−α0‖2) + λ‖η‖2(m)

≥ C(‖η − η∗‖2 − ‖η0 − η∗‖2 + ‖β − β0‖2 + ‖α−α0‖2) +
λ

2
‖η − η∗‖2(m) − λ‖η∗‖2(m)

≥ CLs2 − Cs2. (S3)

The first inequality holds by Lemma 1. This is because ‖η−η0‖∞ ≤ ‖η−η∗‖∞+‖η∗−η0‖∞ ≤

C
√
KLs = o(1). (Note we have the property ‖η‖∞ ≤ C

√
K‖η‖,∀η ∈ Gn. See proposition

2.2 of Huang and Su (2021).) The second inequality holds by triangle inequality and that

1
2
‖η1 − η2‖2(m) ≤ ‖η1‖2(m) + ‖η2‖2(m) for functions η1, η2.

Furthermore, by Lemma 1 again,

E[`(η∗,α0,β0)] + λ‖η∗‖2(m) − E[`(η0,α0,β0)]

≤ C‖η∗ − η0‖2 + λ‖η∗‖2(m)

≤ Cs2. (S4)

Since L is sufficiently large, combining (S3) and (S4), we establish (S2). �

Proposition 2. Under the assumptions of Theorem 1, there exists a local minimizer ĝ =
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(η̂, α̂, β̂) of En`(η,α,β) + λ‖η‖2(m) with η ∈ Gn such that

‖η̂ − ηλ‖2 + λ‖η̂ − ηλ‖2(m) + ‖α̂−αλ‖2 + ‖β̂ − βλ‖2 = Op

(
1

nλ1/(2m)
∧ K
n

)
,

where a ∧ b = min{a, b}.

Proof of Proposition 2. Denote u2 = 1
nλ1/(2m) ∧ K

n
. We only need to show that for all

(η,α,β) with ‖η − ηλ‖2 + λ‖η − ηλ‖2(m) + ‖α−αλ‖2 + ‖β − βλ‖2 = Lu2 with L sufficiently

large, we have with probability approaching one,

En`(η,α,β) + λ‖η‖2(m) > En`(ηλ,αλ,βλ) + λ‖ηλ‖2(m). (S5)

Let h(ξ) = E`(gλ+ξ(g−gλ))+λ‖ηλ+ξ(η−ηλ)‖2(m), where g = (η,α,β) and gλ = (ηλ,αλ,βλ).

Then the difference of the two sides of (S5) is

En`(η,α,β) + λ‖η‖2(m) − En`(ηλ,αλ,βλ)− λ‖ηλ‖2(m)

= h(1)− h(0) + (En − E){`(g)− `(gλ)}.

Since ξ = 0 is a local minimizer of h(ξ) (by the definition of (ηλ,αλ,βλ)), we have h′(0) = 0

and the above is bounded below by

h′′(ξ∗) + (En − E){`(g)− `(gλ)},

for some ξ∗ ∈ [0, 1]. Using Lemmas 2 and 3, (En − E){`(g) − `(gλ)} = Op(
√
Lu2) while

h′′(ξ∗) ≥ CLu2, and thus the above is positive with probability approaching one, which

established the result. �

9



C.2.2 Proof of Theorem 2

For asymptotic normality of β, we need to rely more on the specific form of the likelihood

to get an explicit asymptotic covariance matrix.

Since the estimator (η̂, α̂, β̂) locally minimizes the penalized loss, ξ = 0 locally minimizes

1

n

n∑
i=1

J∑
j=1

mij

(
α̂j + η̂(xT

ijβ̂) + ξ{αj + η(xT
ijβ)− α̂j − η̂(xT

ijβ̂)}
)

+ λ‖η̂ + ξ(η − η̂)‖2(m),

for any α,β, η ∈ Gn.

By the first-order optimality condition, we have

− 1

n

n∑
i=1

J∑
j=1

m′ij(âj){α̂j + η̂(xT
ijβ̂)− αj − η(xT

ijβ)}+ 2λ〈η̂, η − η̂〉(m) = 0, (S6)

where âj = α̂j + η̂(xT
ijβ̂) (note that previously we have also defined a0j = α0j + η0(x

T
ijβ0)).

Then, we set αj = α̂j + α̃0j1
T(β̂ − β0) and η = η̂ + (β̂ − β0)

Tη̃∗ and β = β0 in (S6),

where η̃∗ is the spline approximation of η̃0 with ‖η̃∗j − η̃0j‖ = O(K−p), ‖η̃∗j‖(m) = O(K(m−p)+)

(Proposition 2.1 of Huang and Su (2021)). Then (S6) becomes

− 1

n

n∑
i=1

J∑
j=1

m′ij(âj)
{
η̂(xT

ijβ̂)− η̂(xT
ijβ0)− (β̂ − β0)

Tη̃∗(xT
ijβ0)− α̃0j1

T(β̂ − β0)
}

+2λ〈η̂, (η̃∗)T(β̂ − β0)〉(m) = 0. (S7)

We will now show that the left-hand side in the above is equal to

1

n

n∑
i=1

J∑
j=1

{
m′ij(a0j) +m′′ij(a0j)

(
α̂j − α0j + (η̂ − η0)(xT

ijβ0) + η′0(x
T
ijβ0)x

T
ij(β̂ − β0)

)}
·
{

(η′0(x
T
ijβ0)xij − α̃0j − η̃0(x

T
ijβ0))

T(β̂ − β0)
}

+ op

(
1√
n
‖β̂ − β0‖

)
. (S8)
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To see this, we note by Taylor’s expansion,

m′ij(âj)−m′ij(a0j)−m′′ij(a0j)
(
α̂j − α0j + (η̂ − η0)(xT

ijβ0) + η′0(x
T
ijβ0)x

T
ij(β̂ − β0)

)
= m′′ij(a

∗
j)(âj − a0j)−m′′ij(a0j)

(
α̂j − α0j + (η̂ − η0)(xT

ijβ0) + η′0(x
T
ijβ0)x

T
ij(β̂ − β0)

)
= (m′′ij(a

∗
j)−m′′ij(a0j))(âj − a0j)

+m′′ij(a0j)
(
η̂(xT

ijβ̂)− η0(xT
ijβ0)− (η̂ − η0)(xT

ijβ0)− η′0(xT
ijβ0)x

T
ij(β̂ − β0)

)
= (m′′ij(a

∗
j)−m′′ij(a0j))(âj − a0j) +m′′ij(a0j)(η̂

′(xT
ijβ
∗)− η′0(xT

ijβ0))x
T
ij(β̂ − β0),

where a∗j lies between âj and a0j and β∗ lies between β̂ and β0. The above implies

1

n

∑
i,j

m′ij(âj)−m′ij(a0j)−m′′ij(a0j)
(
α̂j − α0j + (η̂ − η0)(xT

ijβ0) + η′0(x
T
ijβ0)x

T
ij(β̂ − β0)

)
= op(n

−1/2), (S9)

since ‖η̂′ − η′0‖ = op(n
−1/4). We also have

{
η̂(xT

ijβ̂)− η̂(xT
ijβ0)− (β̂ − β0)

Tη̃∗(xT
ijβ0)− α̃0j1

T(β̂ − β0)
}

−
{

(η′0(x
T
ijβ0)xij − α̃0j − η̃0(x

T
ijβ0))

T(β̂ − β0)
}

= (η̂′(xT
ijβ
∗)− η′0(xT

ijβ0))x
T
ij(β̂ − β0) + (η̃0(x

T
ijβ0)− η̃

∗(xT
ijβ0))

T(β̂ − β0),

which means

1

n

∑
i,j

{{
η̂(xT

ijβ̂)− η̂(xT
ijβ0)− (β̂ − β0)

Tη̃∗(xT
ijβ0)− α̃0j1

T(β̂ − β0)
}

−
{

(η′0(x
T
ijβ0)xij − α̃0j − η̃0(x

T
ijβ0))

T(β̂ − β0)
}}

= op(n
−1/4‖β̂ − β0‖). (S10)
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Furthermore, the penality term in (S7) is

2λ
∣∣∣〈η̂, (η̃∗)T(β̂ − β0)〉(m)

∣∣∣
≤ 2

√
λ‖η̂‖2(m)

√√√√λ
J∑
j=1

‖η̃∗j‖2(m) · ‖β̂ − βn‖.

We have λ‖η̂‖2(m) = Op(s
2+u2) = op(n

−1/2) (u2 and s2 as defined in the proof of Propositions

1 and 2) and similarly λ‖η̃∗j‖2(m) = op(n
1/2). Thus we have

2λ
∣∣∣〈η̂, (η̃∗)T(β̂ − β0)〉(m)

∣∣∣ = op(n
−1/2‖β̂ − βn‖). (S11)

Combining (S9)–(S11) proves (S8).

Then, using the definition of projection (5), we have

J∑
j=1

m′′ij(a0j)(αj + η(xT
ijβ0))

{
η′0(x

T
ijβ0)(xij − α̃0j − η̃0(x

T
ijβ0))

T(β̂ − β0)
}

has mean zero for any α, η, and thus (S8) implies

1

n

n∑
i=1

J∑
j=1

{
m′ij(a0j) +m′′ij(a0j)

(
η′0(x

T
ijβ0)x

T
ij(β̂ − β0)

)}
·
{

(η′0(x
T
ijβ0)xij − α̃0j − η̃0(x

T
ijβ0))

T(β̂ − β0)
}

= op

(
n−1/2‖β̂ − β0‖

)
.

Noting that
∑

jm
′
ij(a0j) = −

∑
j κij(δij −

exp{α0j+η0(x
T
ijβ0)}

1+exp{α0j+η0(xT
ijβ0)}

) has mean zero, and further

using β̂ − β0 = J0(ζ̂ − ζ0) + Op(‖ζ̂ − ζ0‖2), the central limit theorem immediately implies

the asymptotic normality.

√
n(ζ̂ − ζ0)

d→ N(0,Σ−1)
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and

√
n(β̂ − β0)

d→ N(0,J0Σ
−1JT

0 ),

where Σ = JT
0

∑J
j=1

{∑J
j=1m

′′
ij(a0j)

(
η′0(x

T
ijβ0)xij − α̃0j − η̃0(x

T
ijβ0)

)⊗2}
J0. �

C.2.3 Lemmas

Lemma 1. There exist positive constants C1, C2, C3 such that whenever ‖η − η0‖∞ + ‖α−

α0‖+ ‖β − β0‖ ≤ C1, we have

C2(‖η − η0‖2 + ‖α−α0‖2 + ‖β − β0‖2) ≤ E[`(η,α,β)]− E[`(η0,α0,β0)]

≤ C3(‖η − η0‖2 + ‖α−α0‖2 + ‖β − β0‖2).

Proof of Lemma 1. Since g0 = (η0,α0,β0) minimizes E[`(g)], Taylor’s expansion shows

E[`(η,α,β)]− E[`(η0,α0,β0)] =

∫ 1

0

d2E[`(g0 + ξ(g − g0))]

dξ2
dξ.

We have

d2E`(g0 + ξ(g − g0))

dξ2
= E[

∑J
j=1m

′′
ij(α0j + η0(x

T
ijβ0) + ξ(αj − α0j + η(xT

ijβ)− η0(xT
ijβ0)))

·{αj − α0j + η(xT
ijβ)− η0(xT

ijβ0)}2].

Since m′′ij is bounded and bounded away from zero on bounded interval, and using Taylor’s

expansion and assumption (A4) it is easy to see {αj − α0j + η(xT
ijβ) − η0(xT

ijβ0)}2 � ‖η −

η0‖2 + ‖α−α0‖2 + ‖β − β0‖2. �
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Lemma 2. If ‖η‖∞ + ‖ηλ‖∞ ≤ C for some constant C > 0, then

∂2{E[`(gλ + ξ(g − gλ))] + λ‖ηλ + ξ(η − ηλ)‖2(m)}
∂ξ2

� C(‖η − ηλ‖2 + λ‖η − ηλ‖2(m) + ‖α−αλ‖2 + ‖β − βλ‖2),∀ξ ∈ [0, 1].

Proof of Lemma 2. As in the proof of Lemma 1, we have

d2E`(gλ + ξ(g − gλ))

dξ2
= E[

∑J
j=1m

′′
ij(αλj + ηλ(x

T
ijβλ) + ξ(αj − αλj + η(xT

ijβ)− ηλ(xT
ijβλ)))

·{αj − αλj + η(xT
ijβ)− ηλ(xT

ijβλ)}2],

and {αj − αλj + η(xT
ijβ)− ηλ(xT

ijβλ)}2 � ‖η− ηλ‖2 + ‖α−αλ‖2 + ‖β−βλ‖2. Furthermore,

it is easy to see d2‖ηλ + ξ(η − ηλ)‖2(m)/dξ
2 = ‖η − ηλ‖2(m). �.

Lemma 3. Let F := {(η,α,β) : η ∈ Gn,α ∈ RJ ,β ∈ Rd, ‖η′‖∞ ≤ C, ‖η − ηλ‖ +
√
λ‖η −

ηλ‖(m) + ‖α−αλ‖+ ‖β−βλ‖ ≤
√
Lu}, where u2 = 1

nλ1/(2m) ∧ K
n

is as defined in Proposition

2, we have

sup
g=(η,α,β)∈F

(En − E){`(g)− `(gλ)} = Op(
√
Lu2).

Proof of Lemma 3. It is easy to see that `(η,α,β) is Lipschitz continuous on each of

the three variables on F . Then, using the symmetrization inequality and the contraction

inequality for the Rademacher process (Theorem 2.1 and Theorem 2.3 in Koltchinskii (2011)),
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we have

E

( sup
g=(η,α,β)∈F

(En − E){`(g)− `(gλ)}

)2


≤ CE

( sup
g=(η,α,β)∈F

1

n

∑
i

σi{`i(g)− `i(gλ)}

)2


≤ C

(
E

( sup
g=(η,α,β)∈F

1

n

∑
i

σi{`i(η,α,β)− `i(η,α,βλ)}

)2


+E

( sup
g=(η,α,β)∈F

1

n

∑
i

σi{`i(η,α,βλ)− `i(η,αλ,βλ)}

)2


+E

( sup
g=(η,α,β)∈F

1

n

∑
i

σi{`i(η,αλ,βλ)− `i(ηλ,αλ,βλ)}

)2
)

≤ C

(
J∑
j=1

E

( sup
g=(η,α,β)∈F

1

n

∑
i

∑
j

σi{η(xT
ijβλ)− ηλ(xT

ijβλ)}

)2


+E

( sup
g=(η,α,β)∈F

1

n

∑
i

σi‖β − βλ‖

)2


+E

( sup
g=(η,α,β)∈F

1

n

∑
i

σi‖α−αλ‖

)2
), (S12)

where σi are i.i.d. Rademacher variables independent of all other variables.

Define Fη = {η ∈ Gn : ‖η′‖∞ ≤ C, ‖η − ηλ‖ +
√
λ‖η − ηλ‖(m) ≤

√
Lu}. For a fixed

j ∈ {1, . . . , J}, denoting zi = xT
ijβλ for simplicity of notation, we will now show that

E

 sup
η∈Fη

(
(1/n)

∑n
i=1 σiη(zi)

‖η‖+
√
λ‖η‖(m)

)2
 = O(u2). (S13)

Assume ψk, k = 1, . . . , K is an orthonormal basis of Gn (that is, E[ψk(z)ψk′(z)] = I{k = k′}).

Write η =
∑K

k=1 ηkψk with ηk = E[η(z)ψk(z)]. By Proposition 2.4 of Huang and Su (2021),
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we have ‖η‖2 =
∑K

k=1 η
2
k and ‖η‖2(m) �

∑K
k=1 k

2mη2k. Thus

E

 sup
η∈Fη

(
(1/n)

∑n
i=1 σiη(zi)

‖η‖+
√
λ‖η‖(m)

)2


≤ CE

 sup
η∈Fη

1

n2

(∑n
i=1 σi

∑K
j=1 ηkψk(zi)

)2
∑K

k=1(1 + λk2m)η2k


= CE

 sup
η∈Fη

1

n2

(∑K
k=1 ηk(

∑n
i=1 σiψk(zi))

)2
∑K

k=1(1 + λk2m)η2k

 . (S14)

Using the Cauchy-Schwarz inequality, we have

(
K∑
k=1

ηk(
n∑
i=1

σiψk(zi))

)2

≤

(
K∑
k=1

(1 + λk2m)η2k

)(
K∑
k=1

(
∑n

i=1 σiψk(zi))
2

1 + λk2m

)
.

Plugging the above into (S14), we get

E

 sup
η∈Fη

(
(1/n)

∑n
i=1 σiη(zi)

‖η‖+
√
λ‖η‖(m)

)2


≤ C

n
E

[
K∑
k=1

ψ2
k(z)

1 + λk2m

]

=
C

n

K∑
k=1

1

1 + λk2m
.

Using Proposition 2.5 of Huang and Su (2021) which stated that
∑K

k=1
1

1+λk2m
= O(λ−1/(2m))

and the trivial bound
∑K

k=1
1

1+λk2m
≤ K, we obtain (S13).

Using (S13) for the first term on the right side of (S12), while the second and the third
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terms are easily bounded by O(n−1(‖β − βλ‖2 + ‖α−αλ‖2)), we see that

E

( sup
g=(η,α,β)∈F

(En − E){`(g)− `(gλ)}

)2
 = O(Lu4).

An application of Markov’s inequality then completes the proof of the Lemma. �.
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